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Abstract

This document describes the rapid transmittance algorithm and forward radiative
transfer calculations used in the Goddard Laboratory for Atmospheres (GLA) TOVS
processing and the forward model and Jacobian program modules that have been de-
rived from the TOVS processing routines for use by the Data Assimilation Office. An
overview of the physical basis of the rapid algorithm is given, followed by descriptions
of the routines for forward radiance calculation and routines for Jacobian calculation
(derivative of the forward model with respect to input parameters). The source code
for the modules is listed in the Appendix.

An on-line version of this document can be obtained from

ftp://dao.gsfc.nasa.gov/pub/office_notes/on9608.ps.Z (postscript)

Also, see the Data Assimilation Office’s Home Page at
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1 Introduction

One of the goals of the Data Assimilation Office (DAO) is to make better use of observations
from new instruments, such as satellite-based sensors, which do not directly measure tra-
ditional atmospheric variables such as temperature and moisture. Formerly, height profiles
(retrieved from satellite radiance measurements) were used in our data assimilation system
in an ad hoc fashion without regard to the error covariance structure of the retrievals. New
assimilation methodologies being evaluated by the DAO for using satellite measurements
require knowledge of the forward radiative transfer model and its Jacobian (derivative with
respect to input parameters). To this end, the code for the radiative transfer forward model
for the TOVS (TIROS Operational Vertical Sounder) was extracted from the Goddard
Laboratory for Atmospheres (GLA) TOVS retrieval program used by the Satellite Data
Utilization Office! to process the TOVS Pathfinder Path A retrievals. This code was used
to write a new set of Fortran modules for the forward model and corresponding Jacobian,
which will be incorporated in future DAQO assimilation systems.

The purpose of this office note is to document the program modules for the TOVS for-
ward model and Jacobian. Section 2 describes the physics used in the forward model. In
Section 3 the finite-difference representations used in the code are reviewed. These first
sections, which give the scientific and mathematical background for the forward model and
Jacobian, will be of particular interest to users who would wish to modify the code or to
implement similar code using other forward model parameterizations. General users (those
who wish to calculate TOVS brightness temperatures or Jacobians from input profiles of
temperature, moisture and ozone) will find the description of the program interface in the
latter sections useful: in section 4 the forward model program modules are discussed, and
section 5 discusses the calculation of the Jacobian. Methods which use the forward radia-
tive transfer model and Jacobian for assimilation of satellite measurements are discussed in

Office Note 96-06 (Joiner and daSilva 1996).

2 Theoretical development

Physically-based retrievals and radiance assimilation methods use forward radiance calcula-
tions, i.e. calculation of radiance that would be measured in a satellite channel under given
atmospheric conditions. The most accurate forward problem calculations are performed
via line-by-line calculations to obtain high-resolution radiance spectra, which are convolved
with the instrument response function to obtain channel radiances. (See section 2.2). Use
of such computationally intensive calculations is not practical for operational retrievals or
for data assimilation. Thus, rapid algorithms for forward calculation have been developed
which use simple models, with coefficients fitted to results of line-by-line caluculation with
representative atmospheric profiles.

The methodology for the forward calculation of radiance and brightness temperature using
the GLA TOVS rapid algorithm is given in Susskind, et al. 1983, 1984 and references
contained therein. A summary of the main points presented in those papers is given here.
The purpose is to give users of the TOVS modules an idea of the physics underlying the
code and to bring together information about the GLA forward model (as implemented in
these modules) into one convenient location for easy reference.

Yhow the GLA Sounder Research Team



2.1 Forward radiance calculation

The basic radiative transfer equation for radiation emitted at the top of the atmosphere at
a single frequency v can be written

a7, (p, )

oo dp+ R (6) (1)

Ro(6) = =,0)B, ()0 8) + | BT

where ¢, () is the surface emissivity at zenith angle  and frequency v, T, and T'(p) are
surface skin (ground) temperature and temperature at pressure level p respectively, p; is
surface pressure and R,’(#) is the contribution from radiance reflected from the surface
(discussed in section 2.3).

B, (T) is the Planck function or emitted radiance from a blackbody at temperature 7' for
frequency v under conditions of local thermodynamic equilibrium:

2h3

02(6% - 1)

where h is Planck’s constant, ¢ is the speed of light, and k is Boltzmann’s constant. For
microwave frequencies, blackbody radiation varies nearly linearly with temperature. Also,
microwave measurements are expressed in terms of brightness temperatures, so B(T) is
replaced by temperature T in the radiative transfer calculations.

The transmittance 7,(p, ) from pressure p to the top of the atmosphere at zenith angle 6
is given by

) = exp | [ (P)sec(o)ap 3)

where k,(P) is the atmospheric absorption per unit pressure at frequency v and pressure
Pp.

2.2 Calculations for satellite channels

Each satellite channel represents an observation taken over a range of frequencies

R (0) = /y(bi(z/)Rl,(O)dV (4)

where ¢;(v) is the filter response function for satellite channel 7. For the GLA rapid algo-
rithm Susskind et al. 1983 write this in a form similar to (1):

R:(0) = 0BT (o) + [ BT IR dp 1 0) o)

where now B;(T") = B,,(T), €;(0) = ¢,,(0) are evaluated at a prescribed central chan-
nel frequency v; and the transmittance 7; is a modeled transmittance fitted to channel-
averaged transmittances obtained from line-by-line calculations. Although the Planck func-
tion B,, (1) changes with frequency v it is assumed that the width of the channel response
function ¢ is small enough that the Planck function at the central frequency v; can be used
without modification.



2.3 Reflected radiance from surface

Susskind, et al. 1984 describe R;’(6), the contribution from reflected radiance, as:
Ri'(0) = (1 —&;) Ri} mi(ps, 0) + pi HiTis (6, 05) (6)

where R;| is the effective downward flux of radiation from atmospheric emission for chan-
nel i, p; is the bidirectional reflectance of the surface to the satellite of solar radiation from
the sun with zenith angle 85, H; is the solar radiation at the top of the atmosphere, and
7;5(0,0s) is the atmospheric transmittance along the entire path of incident and reflected
solar radiation. The first term in the above equation represents the contribution of down-
welling atmospheric radiation, and the second term represents the contribution of reflected
solar radiation. The second term is calculated only for HIRS channels with frequencies
greater than 2000 cm™! (HIRS 13 - 19), for solar zenith angles less than 85°.

For the first term, there are several ways that the effective downward flux is calculated,
depending on whether the channel is an infrared (IR) or microwave (MW) channel. For
HIRS IR channels 8,10,18,19 where the atmosphere is optically thin, the effective downward
flux R;] is calculated as:

Ti(ps)
Rl =2 COSH/ B;(T)dr (7)
0

As Susskind, et al. 1984 explain, this equation is based on the assumption of (a) an optically
thin atmosphere, in which the downward flux at any zenith angle x is proportional to sec(x),
and (b) a Lambertian surface, for which the angular reflectance at any angle x is a constant
given by (1 —¢) /7.

For the other HIRS infrared channels, the effective downward flux R; | is modeled according
to Kornfield and Susskind (1977):

where T is the surface air temperature and F; is a channel-dependent constant.

For the MSU microwave channels, the downward flux R;| is calculated explicitly:

0 82 3 570
R;| =TBpTi(ps.0) + / T(P)%dp 9)
Ps

where Tpp is the background radiation from space from the big bang, and 7;(p, ps, ) is
the (downward) transmittance between pressure level p and the surface. The downward
transmittance can be related to the transmittance upward to the satellite as:

Ti(ps s, 0) = 7i(ps, 0)/7i(p, 0) (10)

which enables us to write (9) as:

8[) Ti (p7 0)

Strictly speaking, the relation in (10) is applicable only to monochromatic radiances; but as
Weinreb et al. 1981 explain the microwave response functions are narrow and the transmit-
tance across the channel varies slowly with frequency, so this formula may be sufficiently
accurate for use.

il = T (o) + 70 6) | 700 (11)



2.4 Rapid algorithm for transmittance

The rapid transmittance algorithm has the form

Ti(plve) - 722(p]7p]—170) (12)

—

o
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—
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7w (s, Pi—1,0)Tio (pj pj—1, ) Tow (P, Pj—1,0) (13)
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The total transmittance 7;(p;, #) between satellite level and a level [, is the product of effec-
tive layer transmittances 7;(p;, p;—1, ) for all layers j between satellite level and the level
[. These effective layer transmittances are modeled as the product of terms representing
absorption due to atmospheric gases having a fixed mixing ratio (%7 (p;, pj—1,6)), absorp-
tion due to ozone (7;0(p;,pj—1,0)) and absorption due to water vapor (Tiw(p;,p;—1,0)).
Coeflicients for these terms are obtained by fitting transmittances obtained from line-by-
line calculations. Additional factors for the water vapor continuum absorption and aerosol
scattering and absorption (not included in the line-by-line calculations) are also applied;
these are presented at the end of this discussion.

As explained in Susskind et al. 1983, %0(p;,pj—1,6) and Tw(p;, pj—1,6) are not single
species layer transmittances calculated using ozone absorption or water vapor absorption
alone. Since the channel radiance measurements are not monochromatic a simple product
relation for transmittances does not apply. Given line-by-line transmittance calculations
for 7 (pi1, 0) (fixed gases only), 7ro(pi, ) (fixed gases plus ozone), and mrow (pr, 0) (fixed
gases, ozone, and water vapor), the effective layer transmittances are calculated according
to

~ — Tl(pve)
Ti(pj,pj-1,0) = lee) (14)
K3 J—1
Fo(pipioi,0) = 7iro (pj pj-1,6) 5
0\Pjy Pj—1, ) = %F(p [ 0) ( )
T Iy 77—1
- Tirow (P, Pj—1,0
Tiw (pj, pj-1,0) = (p;: pj-1, ) (16)

Tiro(pj, pj-1,9)

The next two sections describe the models used for the effective mean layer transmittances
in the GLA TOVS rapid algorithm. The values of the coefficients used with these models are
derived by least-squares fitting to transmittances from line-by-line calculations performed
using representative atmospheric profiles. The coeflicients are provided for 71 layers in the
vertical (see Table 1 for pressure levels bounding the layers) and at three zenith angles (0°,
50°, and 75°); values at other zenith angles are obtained by linear interpolation with respect
to sec(f):

sec(f) — sec(fy)
sec(fz) — sec(fy)

7i(pj pj=1,0) = Ti(p;, pj—1,01) + (7i(pjrpi—1,02) — Ti(pjy pj=1,61)) (17)

where #; and 6, are the rapid algorithm angles bracketing the zenith angle 6.



Table 1: GLA algorithm pressures, standard temperatures and scattering coeflicients

Pressure Temperature Scattering || Pressure Temperature Scattering
(mb) (K) Coefficient (mb) (K) Coefficient
0.10 221.6 0.000 240.0 222.9 0.00300
0.40 254.8 0.000 260.0 226.2 0.00300
0.70 264.4 0.000 280.0 229.3 0.00300
1.00 266.5 0.000 300.0 232.1 0.00300
1.30 265.0 0.000 320.0 235.2 0.00300
1.70 261.8 0.000 340.0 238.5 0.00300
2.00 259.7 0.000 360.0 241.6 0.00300
3.00 251.4 0.000 380.0 244.5 0.00300
4.00 246.1 0.000 400.0 247.3 0.00300
5.00 242.2 0.000 425.0 250.2 0.00300
6.00 239.2 0.000 450.0 253.3 0.00300
7.00 236.6 0.000 475.0 256.3 0.00300
8.00 234.4 0.000 500.0 259.0 0.00306
9.00 232.5 0.000 525.0 261.6 0.00312
10.0 230.8 0.000 550.0 263.9 0.00318
15.0 228.0 0.000 575.0 266.1 0.00325
20.0 224.5 0.000 600.0 268.2 0.00331
30.0 221.0 0.000 625.0 270.3 0.00340
40.0 217.0 0.000 650.0 272.2 0.00354
50.0 213.5 0.000 675.0 274.1 0.00368
60.0 210.6 0.00022 700.0 275.9 0.00381
70.0 208.1 0.00058 725.0 277.5 0.00409
80.0 206.8 0.00091 750.0 278.9 0.00438
90.0 206.5 0.00121 775.0 280.3 0.00446
100.0 206.1 0.00143 800.0 281.6 0.00501
110.0 206.6 0.00167 825.0 282.9 0.00560
120.0 207.9 0.00186 850.0 284.2 0.00619
130.0 209.0 0.00207 875.0 285.3 0.00678
140.0 210.1 0.00222 900.0 286.3 0.00741
150.0 211.0 0.00238 925.0 287.2 0.00864
160.0 212.2 0.00254 950.0 288.2 0.00988
170.0 213.4 0.00271 975.0 289.1 0.01112
180.0 214.7 0.00292 1000.0 290.0 0.01236
190.0 215.8 0.00300 1025.0 290.8 0.01359
200.0 216.9 0.00300 1050.0 291.7 0.01483
220.0 219.3 0.00300




2.4.1 Ozone and water vapor contributions

The effective layer transmittances due to ozone and those due to water vapor are both
modelled using an equation of this form:

7~—ic(pjﬁpj—lv 0) = exp <_A2,],c(0)[1 - BZ,C(T] - 273)]“0(]7] - 1)Ni,c> (18)

where ¢ is the constituent (either ozone or water vapor), u.(j,j — 1) is the integrated
column density of the species in the layer between levels j and j — 1, IV; . is a channel
and species dependent constant between 0.5 and 1, A; ;. is an effective channel, species,
pressure, and angle dependent absorption coefficient, B; . is a channel and species dependent
constant representing percent change per degree, and 7T} is the mean temperature in the
layer between p;_; and p;.

Susskind et al. 1983 give the rationale for this formulation as follows: the effective layer
transmittances 7;o and T; can be treated as having the transmittance properties of a gas
in a homogeneous layer with mean temperature T'; and pressure p of the atmospheric layer,
and vertical column density u of the absorbing gas in the layer. The use of (14) removes
most of the dependence of the mean layer transmittance on the properties of the atmosphere
above the layer. Thus we would expect that the log of the mean layer transmittances would
be proportional to u for weakly absorbing lines and u!/2 for strong lines, with an exponent
of intermediate value applicable to a composite of lines.

2.4.2 Fixed gas contribution

The definition of effective mean layer transmittances in (14) reduces the dependence of
the layer transmittances on the profile above the layer, but this effect still must be taken
into account in the model for fixed gas contribution. The transmittance in layer j for
two profiles having the same layer temperature 7} but different temperature profiles above
p; will still differ because the profile with more attenuation above the level will have less
effective attenuation within the level. Susskind et al. 1983 note that temperatures in
regions of the atmosphere which do not contribute to the channel radiance are irrelevant
— either no attenuation is taking place in those levels or the total transmittance is already
small enough that second-order effects are not important. Thus, they define an effective
mean temperature above pressure p; as the average temperature weighted by the weighting
function for each channel i:

- 1 Ps a2 (pj, 0)
TZ"H:*/ T(p)——L"Ldp 19
]() 1—7'2'0(]’]‘70) o ( ) 8]) ( )
where 7°(p;, ) is the transmittance of channel ¢ for the standard temperature profile.
The effective mean layer transmittance is modeled according to
7ir (pj, j-1,8) = Aij(0) + Bij (0)(Tj — T7) + Ci(0)(T1;(6) — T5(9)) (20)

where Tj is the mean temperature in layer j between p; and p;_; for the given profile, T;’ is

the mean layer temperature for a standard temperature profile for the layer j and Tij and
T7; are the effective mean layer temperatures as defined in (19) for the given temperature
profile and for the standard temperature profile, respectively.



2.4.3 Water vapor continuum

We now discuss the transmittance terms that are not included in the line-by-line calcula-
tions; the water vapor continuum and aerosol scattering terms. The water vapor continuum
term is modeled as described in Susskind and Searl (1978), based on a representation given
by Bignell (1970). The net atmospheric absorption in layer j due to the e-type component
of the water vapor continuum is written

I(HQO(ijmj_ 1) :k(V7T])é]aH20(]7]_ 1) (21)
where k(v,T}) is the absorption coefficient (g1 cm? atm~1) for the e-type HyO continuum
component for layer j, €; is the mean HyO partial pressure for layer j, and tm,o0(j,j—1)is
the H2O column density (g cm™!). The coefficient % (v, T;) is assumed to vary linearly with
temperature.

2.4.4 Scattering and absorption by aerosols

The term for aerosol scattering and absorption used with the GLA rapid transmittance
algorithm is written as (Susskind et al. 1983):

7a; (P, 0) = exp(—kq, (p) sec ) (22)

where kg, (p) is the sum of the aerosol scattering and aerosol absorption optical thickness
from pressure p to the top of the atmosphere for the given channel ¢. For the 15-pm channels,
the total optical depth of the tropospheric aerosols is taken as 0.01 for nadir viewing, falling
off with a 1.2-km scale height. There is an additional stratospheric aerosol layer between 12
and 20 km with a total optical depth 30% of that of the tropospheric layer. For the 4.3-um
channels, the optical depths are taken to be a factor of 3 greater than the 15-um channels
(i.e. a total nadir optical depth of 0.039). The values of scattering coefficients used are
listed in Table 1.

3 Finite-difference representations

The purpose of this section is to relate the physical background of the forward model (as
discussed in Section 2 to the finite difference representations that are used in the code
for the forward radiative transfer calculation. From the finite-difference forward model
representation we can perform derivative operations on the forward model to obtain the
Jacobians for temperature, moisture, and ozone.

3.1 Finite-difference forward calculation

The description of the finite-difference forward model calculation in this section will follow
the same steps as in the forward module code. Effective layer transmittances are calculated
at the rapid algorithm zenith angles and interpolated to the satellite zenith angle. The
product of the layer transmittances is taken to obtain the transmittance between the satellite
and the rapid algorithm levels. The radiance corresponding to the input profiles is then



calculated by taking vertical integral of the Planck function weighted by the derivative of
the transmittance.

The notation convention used in this section is relatively simple. The subscripts of terms
are ordered as (Channel level or layer, angle) if applicable The channel index is usually ¢,
and the angle index is k. Level indices used include 7, [, and m. Thus, T, is temperature
at pressure p,,, 1), is mean layer temperature for the layer m between Pm—1 and py,, Tijk
is the effective layer transmittance for channel ¢, layer j, and rapid algorithm zenith angle
01, and 7;;(#) is transmittance for channel 7 between the satellite and pressure level [ for
zenith angle 6.

Fixed gas contribution In the forward model code, we first calculate the contributions
to effective layer transmittance due to fixed gases, water vapor, and ozone. We consider the
fixed gas contribution first. The expression for effective mean temperature defined in (19)
can be written in finite difference form as:

Ti,j,k 1 — 7_ Z T 7 m—1,k zom k) (23)
0,5,k

)

where Ti,j,k is the effective mean temperature for channel ¢ at pressure level j for rapid
algorithm zenith angle k. The transmittance for the standard temperature profile 77, is

derived from (13) and (20):
J

TC:JJC H TF; 1k H Ak (24)

=1

This can be substituted into (23) to get

J m—1
Tiix = E Tom(1— A k) H Ak
Hl 1 Zvlvk m= =1

1 d _
= - Wi kT (25)
L—TIZ Ak mz::I

where Wi 1 = (1 — A 0 k) H;i;l A; 1k is a coefficient which combines the constant terms
of the vertical integration. Then (20) can be rewritten as

ru = Ak + Bign (T = T7) + ———— _ Ciik Z Wik (T — T2)
1_Hl 1 Z,I,km 1 (26)
= Apjp+ Biju(T; = T7) + CF Z Wik (T — Ty,
. '
h defi ficient O, = — Cbak
where we now dellne a new coellicien ik 1_1_H=1 Aiylyk



Water vapor contribution The water vapor contribution to transmittance is made up
of two terms, the modeled water vapor transmittance from (18) fitted from line-by-line
transmittance calculations, and the water vapor continuum term given in (21). Since the
coefficient k(v, T}) is assumed to be a linear function of temperature we write the absorption
for channel 7 in layer (p;_1,p;) as

. o dk - o) - -
Kmo,, =k (1 +opli =T )) ejlm,o, (27)

The contribution to transmittance from the water vapor continuum term would then be

7~—Contwyk - eXP(— Sec(ek)I(HgOm) (28)

The input water vapor profile is in terms of specific humidity (kg H2O/kg air) so conversions
to mean layer vapor pressure € (atm) and column density @ (g cm™2) must be performed.
For column density, the conversion is:

R 10Ap; 10(pj—1 — pj
U11,0; = p11,0,82] = pain, 187 = — L = (b; p ])%‘ (29)

For HyO vapor pressure the conversion is:

_ air mol. wt  p;(mb)

& = ,
J H50 mol. wt. 1013,25% 9
1 pj(mb) "

€ 1013.25mb

atm

(30)

For the transmittance modeled from line-by-line calculations (18), the coefficients are ad-
justed on input to be used with water vapor column density. We may write

Fw, o = exp (= Dy jx[l = Eip(T; — 273){ (itrr,0,) ™)) (31)

and this may be combined with the water vapor continuum term to obtain a term for the
total water vapor contribution to effective layer transmittance

TH?Oi,J,k = TWi,J,k Tcontm,k

= exp <_Di,j,k[1 — Ei7k(T]‘ — 273)]{(@H20])Mi} — Sec(ek)l(fbom) (32)

Ozone contribution For the ozone contribution the only factor is from the modeled
transmittance (18). Since the coefficients for ozone are adjusted to be used with the ozone
column density input to the routine, no conversions are necessary. Thus, we may write

0us, = €xp (= Fijall = Gin(Tj — 273){(ii0,,)"}) (33)

Total transmittance When the contributions to effective layer transmittance from the
fixed gases, water vapor, and ozone have been calculated, the effective layer transmittance
is formed from their product:

Tigk = TF ;2 TH0: ; xTO0s: i (34)



The effective layer transmittances for the rapid algorithm angles that bracket the satellite
zenith angle are interpolated linearly with respect to sec(f) as shown in (17). The product
of the effective layer transmittances gives the total transmittance between the satellite and
the rapid algorithm levels. For infrared channels, this is also multiplied by a factor 7,,
(from (22)) to account for scattering. Thus, the total transmittance is:

J
7i5(0) = 70, (0) [ [ 7:0(0)

1

o~

(35)

J

. sec(#) — sec(8 . -
=1, (0 ][ {T,l,k ©) ) )(Ti,l,k+1 - Ti,l,k)}

i sec(fry1) — sec(by

where 85, and 641 are the rapid algorithm angles bracketing the desired angle 6.

The transmittance for solar radiation reflected from the surface is calculated in the same way
as the total transmittance in (35) except that transmittance is interpolated to the effective
solar zenith angle 8 pF = sec™!(sec(y) + sec()) (where ¢ is the solar zenith angle). Thus

sec (Ogrr) — sec(by)
7 0 — Tq, 0 T —
Tis(0Fr) = 7o, v (OEFF U{ sec(Brer) — sec(0y) (Titht1 — Tith) (36)

Forward radiance calculation The forward radiance calculation from (5) can be written
in finite difference form as

N
Ri(8) = £i(0) Bi(Ty)msn(0) + > Bi(Th) (rii-1(8) — 7i.(8)) + Ri'(9) (37)
=1
where ¢; is the surface emissivity for channel 7 and T is the surface skin temperature. Note
again that for microwave channels we use 7j in place of B;(1})

The expressions for reflected radiance R;'(6) are discussed in section 2.3. The basic equation
(6) expressed this as the sum of terms for contribution from the downward flux of radiation
from the atmosphere and a solar term (where appropriate).

R/(0) = (1—e;) Rilmin(0) + piHiTis(0FF) (38)

The method for calculating the effective downward flux of radiation R;| is channel depen-
dent, so there are three expressions to be written in finite-difference form. For the microwave
channels, the finite-difference representation of (11) is

N
- 1 1
=T s N (0 s N (0 T —
Rid = Toprn(8) + in ); I(Ti,l(e) Ti,1_1(9)) (39)
For IR channels where the atmosphere is optically thin, we follow (7) and write
N —
Rl =2cos8>  Bi(T) (riy-1(6) — 714(6)) (40)
=1
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Other IR channels use the modeled downward flux as in (8)

Ri| = F;Bi(T;)(1 — 7in (0)) (41)
where T is the surface air temperature.
For the solar contribution term, the bi-directional reflectance p; is taken as an input pa-

rameter since it (along with cloud-cleared radiances) is available from the level 2 Pathfinder
data sets. The solar radiation H; is

H=r (r;“)z cos(0) B:(5600K) (42)

(5}

where rg,, is the Sun’s radius, R, is the radius of Earth’s orbit and ¢ is the solar zenith
angle.

3.2 Finite-difference Jacobian calculation

The calculation of the Jacobian, or derivative of brightness temperature with respect to
input parameters is accomplished through operation on the finite-difference representation
of the forward problem as expressed in the Fortran code. For our current work, we are
only interested in the dependence of brightness temperature on changes in the atmospheric
profiles of temperature, moisture and ozone, so derivatives with respect to other parame-
ters (e.g. surface and skin temperature, surface emissivity, reflectance, etc.) will not be
considered.

This discussion begins with derivation of a few general expressions needed for the Jacobian
calculation. Then, the derivative of the atmospheric term (vertical summation) with respect
to ozone and water vapor is obtained. The derivative for temperature is discussed separately
since its form is different from the ozone and water vapor derivative. We finish by discussing
the derivative of the reflected radiance term, which makes use of terms derived in earlier
parts of this section.

General expressions The expressions needed for the Jacobian calculation can be derived
by repeated applications of the chain rule for derivatives. Brightness temperature is defined
as ©; = B~Y(R;), where B! is the inverse Planck function. Thus, for some input quantity

00 00; 0R;

9Q ~ R 0Q (43)
= 99 9\ oBi(Ty)m (0)+§:B»(T)(T» (0) = 70(0)) + R/ (6) | (44)
- 8R28Q ¢ i\tg)Ti,N - i\ L] 7,{—1 7, 7
= OO OB ) +
0 o~ - IR/ (6)
@;BZ(TD (rig-1(0) — 7,0(0)) + 90 (45)
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The derivative of the Planck function with respect to temperature is

B(T 2hv> v h
OB(T) = . v eFF Y (46)
or Cz(eﬁ —1)2 kT2

At brightness temperature ©; we can write the derivative 00;/0R; as

00, 0 4, 8BZ»(T)]_1
aRi_aRB (RZ)_[ T | e (47)

Water vapor and ozone derivatives The next step in obtaining the Jacobian is to find
the derivative of the term in the vertical sum, which is the product of brightness temperature
and transmittance. If @), is water vapor or ozone at a particular level m, we need only
consider the transmittance derivatives. From (45) we may write:

00; 00, oR;
90, ~ o, [T P 0, an +ZB (@) a@ oq,, T =@t pa U9

From (35) we may write (from the product rule or by logarithmic differentiation)

ori.(0) 0 1.
.~ Vg, L7

1 97 ,(6)
1 7: ](0) 8Qm

= 7.(0)

(49)

MN

J

Recall that the layer transmittance 7; ;(6) is obtained by linear interpolation from trans-

mittances calculated at rapid algorithm angles; thus, we have:
07:,(0) _ (1—a) OTijk | OTijk+1

0Qm, 0Qm, 0Qm,

where 0y and 64, are the rapid algorithm zenith angles which bracket the desired angle 8
and a = (sec(#) — sec(bx))/(sec(fr11) — sec(fy)). Substituting into (49), we have

orii(0) Lo OFijn  OFiiket
9., ‘”’l(egﬂpm{“ Sk el o

(50)

Let’s concentrate now on a specific quantity such as ozone column density for layer m

(Qm = um). We know that

Tigk = TF, 07000 TWe i (52)

Since by definition 7, and Tw, do not depend on ozone we need only consider 7o, when
calculating the derivative of 7; ; ;. We can write:

87201. . ) _ N —1 8U]
. = TTous sl = Gl = 20) N
J70.
= ims. 53
PO (53)
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since the ozone column density in layer m enters into the calculation of the effective layer
transmittance only at layer m. We can write similar expressions for the derivatives with
respect to specific humidity. The derivative dry, ;, /0¢p, is almost the same as 97,  , /Ouy,
but with an added term for the water vapor continuum.

Then we can also write:

OTijk . 970, ., 1 5
8u - TF@ m,k TW@ m,k 8u Jm
m m
_ %i,m,k 87—Oi,m,k 5
= - 5 im (54)
TO@ m,k Um
87:¢7]‘7k . 87—Wi,m,k 5
8q - TFi,m,k Ozmk 8u Jm
m m
Fimd  OTW,
= R (55)

TW, du,y,

Since 07 ;1/0Qm = 0 for j # m (for Q,, = ¢n, or u,,) we may also drop the summation
over j in (49) and (51) and write, for [ > m

ori1(0)  10(0) 0Tim(0)  T7:4(0) 0T m OTi m k1
0w Fim®) 0Qu Fam(0) {(1 ~ %0, T g, } (56)
d ' ' B (Ti1-1(8) — 7,,1(0)) 0T ()
ag, MmO =T e v 57
N (Ti,l—l(e) - 72'7[(0)) {(1 B 04) 87~—i,m,k i a@f-@mk}

These expressions can be substituted into (48) to compute the ozone and water vapor
Jacobians.

00 _8@( 1 {( _a)aTi,m,k+ 87—i,m,k+1}

9Qr ~ OR \7in(9) 0Qn T 0Qn
_ S IR/
eiBi(Ty)min(8) = Bi(Tr)Tim(0) + Y Bi(T))(ri0-1(0) — mia(0)) | + 20 (58)
I=m+1 m

Temperature derivative For the temperature derivative, there are additional terms for
the derivative of the Planck function. For convenience, we calculate the derivative with
respect to mean layer temperature T, = 0.5(7,,—1 + T'n)

_— = — ZBZ T — — im—1 — Tim
aT,, IR, [5 T o+ oz, (Tom=1 = Tim)
N
_ 0 OR;
B, (T)— (711 — 7 — 59
+lz:; ( ’)aTm(T” 1= Ti) + o7, (59)
and then use that derivative in calculating the level temperature Jacobian
N —
00; 009; 01, 00 00
= _ =05|——+ — 60
T, = 22 9T, O, [aTj_1 + aTj] (60)
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The temperature derivative has terms for the derivative of the Planck function and the
derivative of the transmittances with respect to temperature. In practice, the transmittance
derivative is often neglected because it is assumed to be much smaller than the derivative of
the Planck function. The Planck function derivative was given in (46). The derivation of the
transmittance derivative is similar to that in the previous section, up to (51). Unlike ozone
and water vapor, there is a temperature contribution in all three components (7z,, 70,, Tw,)
of the effective mean layer transmittance. Thus, by logarithmic differentiation we write:

87~—i,j,k s 1 87~—Fi,],k i 1 0T, O,]k i 1 87~—W,'7]7k
8Tm B 7]7k %Fiyjyk 8Tm %Oiyj,k 8Tm %Wi,J,k GTm

(61)

The derivatives of the water vapor and ozone contributions to transmittance with respect
to temperature are relatively simple:

87~—W,' - M, 0Ky 0;
Tf = [Di,j,kEi,k(Tj — 273)?%]’ — SGC(Ok)aT;J] TWi,],k(Sjm (62)
0%,

8T;’k = (Fz',j,sz',k( — 273)up,; ]) 70, Ojm (63)

For these derivatives (as with the transmittance derivatives with respect to ozone and
water vapor) the mean temperature for a given layer affects only the effective transmittance
contribution for that same layer.

The temperature derivative of the fixed gas contribution is complicated by the effective
mean temperature term. Since we calculate effective mean temperature for a layer through
a weighted sum of temperatures from all layers above, the temperature in a given layer
affects the effective mean layer transmittance for every layer below that one.

OTF,
1,7,k *
i - B C W, 2ot
8Tm 1,7,k 8T + 1,7,k Z zlk
= Bijrdjm + Ci*,]‘,k Z Wi 1.k0tm (64)
=1
Thus
~ 0 j<m
o7F, :
8TJ LA ',j,k + CZ*] kWi,m,k ]=m (65)
" I kWZ m,k ] >m
and
0 j<m
or: - ~ 1 a%Fi, k 1 a%oi, k 1 97w, k .
;%J,k _ ) Tigk (%mek QT:I + Tou 8 aT,i + e aT,,f j=m (66)
" — 87:F
Ti,9,k 1,9,k .
TFzJ] k aT;l ] > m
Also
07i,(0) 0 j<m
T = 87’1 3,k 87’1 1 k+1 . (67)
T, (1-a) T ta—Es j>m
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and since the temperature in a given layer only affects the effective mean layer transmittance
in layers at and below that layer we can write for [ > m

l

87’21 0 1 87’27]( )
G =Tl ) >0 (68)

1

j=m

Since 97;(0)/0T,, = 0 for [ < m we can also rewrite (59) to get:

00, 00, [ orin . 0B;(T,) ' ' 0T
ol,,  OR; |:€ZBZ () T, oT,, (Tiym—1 = Tiim) — Bi(Thn) T,
N
I 075 1-1 071 8R2/
Bi T = _ " -

Derivative of reflected radiance term Obtaining the derivatives of the reflected radi-
ance term is the final step in the calculation of the Jacobians. From (38) we can write:

OR; |

o = -2 ) + (1= <) + putt Zsmrr)

oQ 3@ oQ
The derivatives of the transmittances 0m; x/0Q and 07;5(0gFr)/0CQ) can be obtained as in

(56) and (68). This leaves us only with the derivative of the downward flux dR;| /0Q to
consider.

(70)

The expressions for downward flux were given in (39)-(41). For microwave channels, the
form of the downward flux derivative is the most complex. For the water vapor and ozone
derivatives, we have:

ORiL  Omin(6) AR 1
8Qm B 8Qm TBB—I_IX;TI (Til(e) - T 1—1(0)) "

=G {m + 3 1l(em) - (n,11<0>)]}825f)

[=m+1

The expression for the temperature derivative is more complicated:

st ZTZ (n 11(9) - Ti,l—ll(O))]

=1

() ()] () 0

N 2 ?
. - 1 d7;1-1(0) 1 07i1(6)
+ 7,8 (6) l ;1 T (Ti,z—l(e)) T, 7i1(0) 0T

For IR channels where the atmosphere is optically thin, Eq. (40) for R;] involves a vertical
sum—the atmospheric component of the radiance calculation for which we have already

OR; | Omn(9)
oT, 0T,
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derived (and in the modules have calculated) appropriate expressions. Thus we have

OR; ) o T
s = 2eostoo S0 BT (it 9) - 7l6) =

l=m

For the other IR channels, the expression for the derivative of the downward flux is much
simpler. The only term affected by changes in the atmospheric profile is the surface trans-
mittance, thus:

oR; |

. arin(0)
8Qm — _EBZ(TS)

OQm,

(74)

4 Modules for forward radiance calculation

The last two sections of this office note discuss the program modules used to implement
the GLA forward model and Jacobian. This discussion is aimed primarily at the end user
who may wish to call the forward model or Jacobian code from their program. The entry
points to the main routines are given, along with a complete description of the input and
output parameters. The program flow is documented by listing the subroutines called by
the main routines and describing the calculations performed. Some relevant variables in the
subroutines are described using mathematical formulas.

In this section, the Fortran modules used to implement the GLA forward model are dis-
cussed. The program flow is very simple to follow. The major steps are initialization of
COMMON blocks with rapid algorithm coeflicients, calculation of transmittances, and the for-

ward model calculation of radiance (or brightness temperature). The routines responsible
for these steps are initialGLA, tovs_tau, and hirsrad, respectively.

4.1 Initialization: initialGLA

Input parameters:

itrfdat INTEGER unit number (previously opened) of transmittance data file
satelite CHARACTER*2 satellite identifier (see Table 2)

Output parameters:

bland LOGICAL (360,180) array of land/water flags

ierr INTEGER error flag for transmittance coeflicients
0 successful read
1 error reading dataset
2 less than 24 channels found
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Table 2: Satellite identifiers

satellite id
TIROS-N | TN
NOAA-6 | NA
NOAA-7 | NC
NOAA-8 | NE
NOAA-9 | NF
NOAA-10 | NG
NOAA-11 | NH
NOAA-12 | ND

Subroutines called:

matcon Sets math constants for retrievals

phycon Sets physical constants for retrievals

grdcon Sets vertical grid constants

chacon Sets channel constants for TOVS channels

dattrf Reads rapid algorithm transmittance coefficients

Before the transmittance and radiance calculations can be performed, coefficients and phys-
ical and mathematical constants must be loaded into the TOVS COMMON blocks. The
initialGLA routine is an example driver for this; the input variables are the unit num-
ber of the transmittance coefficient file (previously opened by the main program) and a
2-letter character string indicating which satellite is being used. The current configura-
tion only accomdates the use of coefficients from one satellite at a time. The initialGLA
routine calls routines to initialize physical (phycon), mathematical (matcon) and vertical
grid (grdcon) constants. This version of the initialGLA routine opens and reads in a
dataset with land/water flags; this may not be necessary in future versions of the code if
land /water flags are provided with the input profiles. After the land/water flags are set,
routines are called to initialize channel-related constants (chacon) and to read in the rapid
algorithm transmittance coefficients (dattrf). Each of the initialization routines phycon,
matcon, grdcon, chacon and dattrf has an associated COMMON block defined in INCLUDE
files phycons.h, matcons.h, grdcons.h, chacons.h and taucoef .h, respectively. Most of
these initialization routines are straightforward, except for dattrf which is summarized
below.

4.1.1 Transmittance coefficients: dattrf

The purpose of dattrf is to read transmittance coefficients, perform some calculations to
convert the coefficients to the form which they will be used in the radiance calculation, and
store the coefficients into the taucoef COMMON block. In the first step the zenith angles for
the rapid algorithm coefficients are set up. Then, the coefficients for the rapid algorithm
are read into temporary arrays. These coefficients were fitted to the original 66-level rapid
algorithm; so the level-dependent coefficients at and above the 2 mb level are adjusted to fit
the current 71-level vertical integration. In the final section of the routine, the coefficients
are copied into the proper ‘slots’ in the common block, based on the input channel id.
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In the last section of dattrf we also perform calculations to adjust the units of the trans-
mittance coefficients to match those of the profiles used in the forward radiance calculation.
The original transmittance coefficients were fitted for water vapor and ozone column den-
sities expressed in terms of molecules/cm? while the current calculation uses densities of
g/cm?. The conversion factors are raised to the same power as the column density (see

(18)).

Some coefficients used in the fixed gas transmittance calculation are also set in the last
section of dattrf. Eq. (26) showed how the coefficients associated with the fixed gas
calculation could be arranged in a compact form; the calculations in the last section of
dattrf are performed to obtain these new coefficients. The variables from dattrf associated
with (26) are:

J
2 = 1—7=1-[]Aul0)
=1

k
1
TAUCFC = Cf = Ci;(9) C,(oz |
1-Th_, Au(®) 1-75

o~

The dattrf routine was copied almost verbatim from the GLA TOVS retrieval code, to
ensure the compatibility of the transmittance coefficients. Future versions of this code could
be simplified if the coeflicient database were reformatted, but the link to the original physics
of the rapid algorithm would then be lost. Any revision of this routine should be done with
care.

4.2 Transmittance calculation: tovs_tau

Input parameters:

tair REAL (MAXLEV) array of temperatures (K) at rapid algorithm levels
tmptop REAL temperature for top level of integration

h2omid REAL (MAXLEV) array of layer specific humidities (kg HoO / kg air)
ozomid REAL (MAXLEV) array of layer ozone column densities (g / cm?)

ps REAL surface pressure (mb)

nchan INTEGER number of channels to calculate

chanarr INTEGER (MAXCHA) array of channels to calculate; 1-20 = HIRS, 21-24 = MSU
nlev INTEGER index of surface level (also number of levels to use in calculation)
mw_zen REAL satellite zenith angle (degrees) for microwave channels

ir_zen REAL satellite zenith angle (degrees) for IR channels

dayflag LOGICAL true if “day” ( sun angle > 85 degrees)

secsun REAL 1. / cos( sun angle )
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Output parameters:

tau REAL (MAXLEV,MAXCHA) transmittance along path to satellite
tausun REAL (MAXCHA) transmittance along path from sun to surface to satellite
errflag LOGICAL returns .true. if error in calculation

Subroutines called:

tovsfix_tau transmittance contribution due to fixed gases

tovsh2o_tau transmittance contribution due to water vapor

tovsozo_tau transmittance contribution due to ozone

tovs_tauang interpolate layer transmittance to satellite zenith angle; take products over layers

The tovs_tau routine is the driver for the transmittance calculation. The input to this
routine includes profiles of temperature at the rapid algorithm pressure levels and specific
humidity and ozone column density for layers bounded by the pressure levels. The strategy
used is to calculate variables common to all channel calculations (such as mean layer tem-
perature, moisture variables, and zenith angle factors), then loop through the input channel
list to calculate transmittances.

For the moisture variables, unit conversions are performed, since the input units of specific
humidity (¢: kg HyO / kg air) are different from the units needed for the rapid algorithm
(column density u,: g cm™2) and the continuum model (vapor pressure e: atm). These
conversions were discussed in (29) and (30).

. 10Ap
effh2o = UH,0; = PH30; A’Zj = pair’(ZjAZj = Tq]

mol. air  p(mb)
mol. Hz0 1013252 ¥

e =¢;(atm) =

The routines tovsfix_tau, tovsh2o_tau and tovsozo_tau are called to calculate effective
layer transmittances for the fixed gas contribution, 7z (p;, ), water vapor contribution
w (pi1,0), and ozone contribution 7;0(pi, 8) (see Section 2.4 for discussion). The product
of these effective layer transmittances calculated at the rapid algorithm angles is taken to
obtain the layer transmittance at the rapid algorithm angles. These layer transmittances
are interpolated linearly with respect to sec # to the observed satellite zenith angle, and the
product of the layer transmittances is taken to obtain the total transmittance between the
satellite and each layer.

4.2.1 Fixed gas contribution: tovsfix tau

In tovsfix_tau, the fixed gas contribution to effective layer transmittances is calculated
using the model described in Section 2.4.2, with the coefficients modified as in Eq. (26).
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The variables in tovsfix_tau associated with (26) are

j

effTdif = Y Wi(8) (T} — T%)
k=1

taufix = 7p(pj,pj-1,0)

The effective temperature ef£Tdif is carried as a running sum as the calculation of taufix
is carried from the top of the atmosphere down to the surface.

4.2.2 Water vapor contribution: tovsh2o_tau

The contribution of water vapor to transmittance is calculated in tovsh2o_tau as a combi-
nation of the modeled water vapor transmittance 7y (18) and the water vapor continuum
term Kp,o (21).

Key variables in tovsh2o_tau include:

dk
degchn = T
_ dk - .
cont = KHQO,'] =k 1+ ﬁ(Tj — Tcont,j) €;UH,0;

tauh2o0 = 7p,0, ,, = exp K—Dm(@)[l — E/(T; - 273)]%\?) —sec(0) Ky,o,,

4.2.3 Ozone contribution: tovsozo_tau

The calculation of the ozone transmittance contribution is relatively simple. Since the input
profile and transmittance coefficients are already expressed in terms of the same units, we
need only perform the calculation for layer ozone transmittance contribution given in (18).

tauozo = 7o,, , = exp (—Fz',j,k[l — Gixp(Tj - 273)]{(&0%)]\7"})

4.2.4 Zenith angle interpolation: tovs_tauang

After the product of the fixed gas, water vapor, and ozone contributions is taken to obtain
the effective layer transmittance, a call is made to tovs_tauang to interpolate the layer
transmittances to the proper zenith angle. The transmittance between each rapid algorithm
level and the satellite is calculated as the product of all the layer transmittances above that
level (12). For the IR channels, the transmittances are multiplied by the scattering factor
described in Section 2.4.4. Finally, if solar effects will need to be calculated (i.e. daytime
observation for IR channels 13-19), the transmittance is also interpolated to the effective
solar zenith angle

Oprr = sec” ! (sec() + sec())

(where ¢ is the solar zenith angle) along with the appropriate scattering factors.
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Some relevant variables are

tavang = 75k = TF, ; . TH20, ;. TO0a; ; &

tau =7, ;(0) = Ta; (0) H

{~ sec(f) — sec(fy)
Ti Lk

(Fid k1 — ﬂ',l,k)}

sec(Op11) — sec(by)

4.3 Radiance calculation: hirsrad

Input parameters:

tau
tausun
nchan
chanarr
tair
tmptop
ir_zen
emissmw
land
nlev
rho
sunzang
dayflag
tground
tsurfair

REAL (MAXLEV,MAXCHA) transmittance along path to satellite

REAL (MAXCHA)
INTEGER
INTEGER (MAXCHA)
REAL (MAXLEV)
REAL

REAL

REAL

LOGICAL
INTEGER

REAL

REAL

LOGICAL

REAL

REAL

Output parameters:

calc_rad

REAL (MAXCHA)

transmittance along path from sun to surface to satellite
number of channels to calculate

array of channels to calculate; 1-20 = HIRS, 21-24 = MSU
array of temperatures (K) at rapid algorithm levels
temperature for top level of integration

satellite zenith angle (degrees) for IR channels

microwave surface emissivity
land/water flag (.true. if over land)

index of surface level (also number of levels to use in calculation)
bidirectional surface reflectance

solar zenith angle (degrees)

flag for solar calculation, .true. if day

skin (ground) temperature (K)

surface air temperature (K)

IR channels: calculated radiance (w/ cm? sr)
MW channels: calculated brightness temperature (K)

The forward radiance calculation is carried out as described in Sections 2.1 and 3. The
vertical sums are carried out separately for infrared and microwave channels, with surface
terms and reflected radiance added afterwards.

The contribution from reflected radiance is calculated as described in Section 2.3, according
to (38)—(42). For channels 8, 10, 18, and 19 (use_refl = .true.) where (40) applies, the
atmospheric integral part of R;| is simply the partial sum in crad at that point (since
surface terms have not yet been added). The solar contribution (second term in (38)) is
only used for daytime calculations for IR channels 13-19.
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5 Modules for Jacobian calculation

5.1 Brightness temperature Jacobian: tovs_taukK

Input parameters:

tair REAL (MAXLEV) array of temperatures (K) at rapid algorithm levels
tmptop REAL temperature for top level of integration

h2omid REAL (MAXLEV) array of layer specific humidities (kg HoO / kg air)
ozomid REAL (MAXLEV) array of layer ozone column densities (g / cm?)

ps REAL surface pressure (mb)

nchan INTEGER number of channels to calculate

chanarr INTEGER (MAXCHA) array of channels to calculate; 1-20 = HIRS, 21-24 = MSU
nlev INTEGER index of surface level (also number of levels to use in calculation)
mw_zen REAL satellite zenith angle (degrees) for microwave channels
ir_zen REAL satellite zenith angle (degrees) for IR channels

dayflag LOGICAL true if “day” ( sun angle > 85 degrees)

secsun REAL 1. / cos( sun angle )

emissmw REAL microwave surface emissivity

land LOGICAL land /water flag - .true. if measurement over land

rho REAL bi-directional surface reflectance

tground  REAL skin (ground) temperature (K)

tsurfair REAL surface air temperature (K)

Output parameters:

tau REAL (MAXLEV,MAXCHA) transmittance along path to satellite

tausun REAL (MAXCHA) transmittance along path from sun to surface to satellite
bt REAL (MAXCHA) brightness temperatures (K)

dTbdT REAL (MAXLEV,MAXCHA) temperature Jacobian 00;/07}

dTbdq REAL (MAXLEV,MAXCHA) water vapor Jacobian 00;/0q;

dTbdu REAL (MAXLEV,MAXCHA) ozone Jacobian 00;/0u;

errflag LOGICAL returns .true. if error in calculation

Subroutines called:

tovsfix_tauK transmittance contrib. by fixed gases and derivative

tovsh2o_tauK transmittance contrib. by water vapor and derivative

tovsozo_tauK transmittance contrib. by ozone and derivative

tovs_tauprodK take product of fixed, water vapor and ozone contributions and derivatives
tovs_tauangK interpolate transmittance to obs. zenith angle and calculate consistent derivative terms
dTb_d4TQU calculate brightness temperature and Jacobian
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The calculation of the brightness temperature Jacobian follows essentially the same steps
as forward problem calculation of radiance. (Actually, transmittances are set up and the
forward radiance calculation is performed during the process of obtaining the Jacobian.)
The mapping between forward problem modules and Jacobian modules is indicated by
adding the suffix K to the module name, i.e. tovsozo_tauK is the Jacobian corresponding
to tovsozo_tau in the forward model.

The finite-difference representations of the equations used were given in Section 3.2. The
strategy for the Jacobian calculation is to first calculate the derivatives of the effective layer
transmittance contributions from fixed gases, water vapor, and ozone (in tovsfix_tauk,
tovsh2o_tauK and tovsozo_tauk). These derivatives are combined to obtain the deriva-
tives of effective layer transmittance (tovs_tauprodK). The layer transmittance derivatives
are interpolated to the appropriate zenith angle and combined to form the total transmit-
tance derivatives (tovs_tauangK) , which are used to calculate the brightness temperature
Jacobians (dTb_dTQU). Since many of the transmittance terms involve calculation of prod-

ucts, it is convenient to calculate and store the logarithmic derivative of such terms (i.e.

%% rather than %) since, if /' = abc, then by the product rule

8F_8(abc)_F 10a 10b 1 0c
Q- 0 (m*m*z@)

Another thing to note about the derivatives is that when the transmittance is set to zero, we
also set the derivative to zero. The GLA retrieval code (and also this forward radiance code)
contains tests to prevent negative transmittance values; if a transmittance goes negative it
is set to zero. Then, since the transmittance has been set to a constant value, its derivative
must also be zero.

5.1.1 Fixed gas contribution: tovsfix taukK

The fixed gas contribution to transmittance is a function only of temperature. We can use
the derivative formula (65) to obtain the logarithmic derivative

0 j<m
) 1 07k 1 - * : C_
dttaufix = - -k ok Bijx + Ci,j,kWum,k J=m
s OTm Clik ~
7 Wik j>m
6,3,k

Since this derivative is zero for transmittance layers 7 < m, it is efficient to use a packed
matrix to store dttaufix. (In fact, the time required to calculate the Jacobian was reduced
about 20 % when packed notation is used compared with a full matrix representation.) If

. 87’:}7‘ .
we take dttaufix = =+ Lik — ap,; then the matrix has the form
TF; jk Tm

[a11 a1 a3 aq ... aN|

0 99 a3 A4 ... asN
. 0 0 «a a c.oa

dttaufix = 33 3 3N
0 0 0 44 ... aaN
| 0 0 0 0 aONN




where we have taken the temperature layer as the first index and the transmittance layer
as the second index. In the program, this upper triangular matrix is stored as

dttaufix = [ay1, @12, G2, @13, G23, 433, U14, A24, U34, (4g, - . -]

and the index of (m,7)= (7 —1)(j/2)+ mfor 1 < m < j.

5.1.2 Water vapor contribution: tovsh2o_tauk

The derivatives of the water vapor and ozone contributions to effective layer transmittance
are much simpler than the fixed gas term, since layer temperatures and column densities
of ozone and water vapor only affect the layer transmittance for that same layer. (See (53)
and (62)). Some expressions used in this module are:

celsius = Tj — 273

o ,
deffhoo = 2tu _ 104D
OGm g
8[(}[20‘ ( dk ) 1 ﬁ(mb) 10Ap
d cont = 7”:2]62 1+_ T_ cont,] - m(sm
d 940, ar'’ 0l ) o 10132582 ¢ "%
8[(}[20‘ dk 1 ﬁ(mb) 10Ap
dtcont = ———2 = k,—— 28im
T, dT ¢ 1013.2582 g %%
1 07Tm,o,
dqtauh2o = — UEIEE
TH2Oi,],k 8qm
_ o 0Ky 0;
= —Di,j,k{l - EZ'JC(T]‘ - 273)}Miué\f’ 15]‘m - Sec(ek)ﬁ
1 0Tmo,,, M 0K m,0.,,
dttauh2o0 = %H2Oi7]7k 8Tm = Di,j,kEi,kuq] (S]‘m — sec(@k) GTm

5.1.3 Ozone contribution: tovsozo_tauk

The calculation of the derivatives of the ozone contribution to mean layer transmittance is
similar to that for the water vapor contribution. The derivatives calculated are:

1 %0, ) -
dutauozo = ————— = —Fj {1 - Gin(Tj — 273)} Nwg: 6,
TO34 4k qm 3j
1 872031.7]7}€

N.
dttauozo = = Fz’,j,sz’,kUO;] Oim

TOsi .k oTl,,

5.1.4 Transmittance product: tovs_tauprodK

In the modules for the forward radiance problem, the product of the effective layer trans-
mittance contributions from fixed gases, water vapor and ozone is calculated in the main
driver to obtain the layer transmittances. We calculate the derivative of that product in
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this module. The derivatives for the layer transmittances were given in (54), (55) and (66).
The relevant variables are

1 87:¢7]‘7k 1 87:Wi,m,k
dqtauang = — = — Oim
Tijk Om Wi Oum
1 87:¢7]‘7k 1 87:01‘ ok
dutauang = — = — i
d d J
Ti,gk OUO3,, TO; .k U,
1 07k
dttauang = - — Lt
Tijk 0T
0 7<m
1 a%Fj,J,k 1 a%oju,k 1 a%mii,],k —m
=9 TFigr 9Im Toisn 9Im Wi 9Tm J
1 0,5,k :
- i m
TFi j,k ITm J >

5.1.5 Zenith angle interpolation: tovs_tauangk

In this routine the layer transmittances at the rapid algorithm zenith angles are interpolated
to the desired zenith angle, and the product of the layer transmittances is taken to obtain the
total transmittance between a given level and the satellite. The derivative of the interpolated
layer transmittance is obtained by interpolating the derivatives of transmittance at the rapid
algorithm angles. The derivative of the product of the layer transmittances is the sum of the
logarithmic derivatives of layer transmittance. See equations (56) and (68). The variables
used in the code are:

tauint = 8;555) =(1-a) %gjj + aagé’:—l
_ 1 87’2'71(0) _ 1 87~'i,m,k 87~—i,m,k+1
W= g Fm(0) {(1‘0‘) Ogm T Ogn
1 87’2'71(0) _ 1 87~'i,m,k 87~—i,m,k+1
dutau = 7.1(0) Ou, - Tim (0) {(1 @) du,y, ta du,y,

1 Ome) l 1 OTi jk OTi j k+1
dttau = — = _Z — (1-a) o7, +a T,

5.1.6 Jacobilan calculation: dTb_dTQU

The final step in the Jacobian calculation is to sum the transmittance derivatives (and for
temperature, the derivatives of the Planck function) in the vertical and add derivatives of
surface terms to obtain derivatives of radiance and brightness temperature with respect to
the input temperature, water vapor, and ozone profiles. Relevant equations include (58)
and (69), as well as the reflected radiance derivative terms discussed in (3.2)-(3.2).

The calculation of the vertical sums involves terms such as

dTb_dq(1) = dTb_dq(1l) - btav * tau(l) * dqtau(l)
- 1 07,(0)

B (T, 5100 :

(11) 7i1(0) @ g
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dTb_dTav(m) = dTb_dTav(m) + btav * ( tau(l-1) * dttau(m+nml)

T ' 1 d7i,1-1(0)
-  tau(l) * dttau(m+n) )
a7 1(6)
i,1(0 =
mia(6) aT,,

Remember that terms such as dttau and dgtau are logarithmic derivatives and thus have
the derivative multiplied by 1/7.
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A Forward radiance modules prologues and source code

Sample program

program sample

implicit none

O

sample program for GLA forward model and Jacobian
include "tovsparam.h"
integer 1 ! loop counter
character*80 trcoefs ! transmittance coef. file name

¢ 1inputs/outputs for initialGLA

integer itrfdat ! transmittance coef. unit number
character*2 satelite ! satellite ID

logical bland(360,180) ! array of land/water flags
integer ierr ! error flag

¢ inputs for tovs_tau

c atmospheric values are at the 71 (maxlev) rapid algorithm pressure levels
c
real tair(maxlev) temperature (K)
real tmptop temperature at 'top of atmosphere"
real h2omid(maxlev) layer specific humidity (kg/kg)
real ozomid(maxlev) ozone column density (g/cm**2)
real ps surface pressure (mb)

number of channels to calculate
array of channel numbers
number of levels in input sounding

integer nchan
integer  chanarr(maxcha)
integer nlev

real mw_zen zenith angle for microwave channels
real ir_zen zenith angle for infrared channels
logical dayflag ’true’ if daytime

real secsun 1. / cos( solar zenith angle )

¢ outputs from tovs_tau, inputs to hirsrad

real tau(maxlev, maxcha) ! transmittance along path to satellite
real tausun(maxcha) ! transmittance along path from sun
logical errflag ! error return flag

¢ other inputs to hirsrad

real emissmw ! microwave emissivity
logical 1land ! land/water flag

real rho ! bidirectional reflectance
real sunzang ! solar zenith angle

real tground ! surface skin temperature
real tsurfair ! surface air temperature
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¢ output from hirsrad
real calc_rad(maxcha) ! calculated radiances

¢ arrays for Jacobian calculation

real dTbdt(maxlev,maxcha) ! deriv. wrt. input temperature

real dTbdq(maxlev,maxcha) ! deriv. wrt. input specific humidity
real dTbdu(maxlev,maxcha) ! deriv. wrt. input column density
real btnew(maxcha) ! calculated brightness temperature

data itrfdat /23/
c
c set satellite parameters, read in transmittance coefficient dataset

c (in initialGLA)

satelite = ’NH’
trcoefs = ’trcoefs8.nh.ieece’

open(itrfdat,file=trcoefs,status=’0ld’ ,form="unformatted’)
call initialGLA(itrfdat,satelite,bland,ierr)
close(itrfdat)
if (ierr .ne. 0 ) then

print *,’ error returned from initialGLA ’,ierr

stop

endif

c
¢ 1input values for forward (and Jacobian) calculation

print *,’input zenith angles to try’
read(5,*) ir_zen,mw_zen

print *,’input nchan (number of channels) and channel array’
read(5,*) nchan, (chanarr(l),1=1,nchan)

print *,’input number of levels in sounding, then T, H20 and 03’
read(5,*) nlev
do 1 = 1,nlev

read(5,*) tair(l), h2omid(1l), ozomid(1l)

enddo

print *,’input surface pressure and top level temperature’
read(5,*) ps, tmptop

print #*,’input surface air and ground (skin) temperature’
read(5,*) tsurfair, tground

print #*,’input solar zenith angle, and land/water flag’
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read(5,*) sunzang, land

if (sunzang .1t. 89.) dayflag = .true.
secsun = 1. / cos (sunzang * acos(0.) / 90.)

print *, ’input bidirectional reflectance and sfc. MW emissivity’
read(5,*%) rho, emissmw

call tovs_tau(tair, tmptop, h2omid, ozomid, ps, nchan,
& chanarr, nlev, mw_zen, ir_zen, dayflag, secsun, tau,
& tausun, errflag)

call hirsrad(tau,tausun,nchan,chanarr,tair,tmptop,ir_zen,
& emissmw, land, nlev, rho, sunzang, dayflag, tground,

& tsurfair, calc_rad)

call tovs_tauK(tair, tmptop, h2omid, ozomid, ps, nchan,

& chanarr, nlev, mw_zen, ir_zen, dayflag, secsun,

& emissmw, land, rho, tground, tsurfair,

& tau, tausun, btnew, dTbdT, dTbdq, dTbdu, errflag)
stop
end
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Sample Makefile

# sample Makefile --- shows dependencies of files

INITIAL = chacon.o dattrf.o grdcon.o matcon.o phycon.o
TAUCALC = tovs_tau.o tovsfix_tau.o tovsh2o_tau.o tovsozo_tau.o tovs_tauang.o

MODULES

sunang.o hirsrad.o brtemp.o planck.o $(INITIAL) $(TAUCALC)

KMODULES = tovsh2o_tauK.o tovsozo_tauK.o tovsfix_tauK.o tovs_tauK.o \
tovs_tauprodK.o tovs_tauangK.o dplanck.o dTb_dTQU.o

librad.a : $(MODULES)
ar -r librad.a $(MODULES)

libradK.a : $(KMODULES)
ar -r libradK.a $(KMODULES)

chacon.o : tovsparam.h chacons.h phycons.h

dattrf.o : tovsparam.h chacons.h matcons.h phycons.h tauccef.h
grdcon.o : tovsparam.h grdcons.h

hirsrad.o : tovsparam.h phycons.h chacons.h matcons.h

matcon.o : matcons.h

phycon.o : matcons.h phycons.h

sunang.o : phycons.h matcons.h

tovs_tau.o : tovsparam.h matcons.h grdcons.h chacons.h \

tovsfix_tau.o tovsh2o_tau.o tovsozo_tau.o tovs_tauang.o

tovs_tauang.o : tovsparam.h taucoef.h grdcons.h chacons.h
tovsfix_tau.o : tovsparam.h taucocef.h

tovsh2o_tau.o : tovsparam.h taucoef.h phycons.h chacons.h grdcons.h
tovsozo_tau.o : tovsparam.h taucoef.h

tovs_tauK.o : tovsparam.h matcons.h grdcons.h chacons.h taucoef.h \

tovsfix_tauK.o tovsh2o_tauK.o tovsozo_tauK.o \
tovs_tauangK.o

tovsfix_tauK.o : tovsparam.h taucocef.h

tovsh2o_tauK.o : tovsparam.h taucoef.h phycons.h chacons.h grdcons.h

tovsozo_tauK.o : tovsparam.h taucoef.h

tovs_tauprodK.o : tovsparam.h

dTb_dTQU.o : tovsparam.h phycons.h chacons.h matcons.h \
planck.o dplanck.o brtemp.o
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“Include” files

Parameter definitions

tovsparam.h — parameter definitions

beginning of include file  tovsparam.h
used in nearly all modules

parameters for GLA TOVS rapid algorithm

integer maxlev ! maximum number of levels
integer maxangs ! maximum number of angles
integer maxcha ! maximum number of channels

parameter( maxlev=71, maxangs=3, maxcha=24)

! end of include file  tovsparam.h

Constants

chacons.h — channel constants

! beginning of include file chacons.h

initialized in: chacon
used in: dattrf hirsrad tovs_tau tovs_tauang tovsh2o_tau
tovs_tauK +tovsh2o_tauK dTb_dTQU

channel constants used in GLA TOVS retrievals

character*8 chanid channel identifier

logical irchan true if ir channel

logical mwchan true if mw channel

logical use_refl true if use integrated reflected IR in
downward flux calculation

real abscof absorp. coeff for H20 continuum

real freq frequency (cm™-1 or ghz)

|
|
|
|
|
|
|
real chscatt ! aerosol scattering & absorp. coeff.
|
|
|
|
|
|
|

real contmp reference T for H20 continuum
real degchn dK/dT for H20 continuum

real dfxcon downward flux coefficient
real em_land ir emissivity, land

real em_water ir emissivity, water

real plancki const for planck function
real planck2 const for planck function

common /chacons/ chanid(maxcha), irchan(maxcha), mwchan(maxcha)
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&,use_refl(maxcha), abscof(maxcha), freq(maxcha), chscatt(maxcha)
&,contmp(maxcha), degchn(maxcha), dfxcon(maxcha), em_land(maxcha)
&,em_water(maxcha), planckl(maxcha), planck2(maxcha)

! end of include file chacons.h

grdcons.h — vertical grid constants

! beginning of include file grdcons.h

initialized in: grdcon
used in: tovs_tau tovs_tauang tovshZo_tau
tovs_tauK tovsh2o_tauK

vertical grid constants used in GLA retrievals

18May96 Meta S. added ’delprs’ to common

real pres
real presa
real presln
real delprs
real scat
real stntmp
real tstd_av

pressures at level boundaries for rapid alg.
average layer pressures for rapid algorithm
logarithm of pressure

layer difference in pressure * 10 / g

coeff. for scattering calculation

standard temperature profile

average layer temperature, std. profile

common /grdcons/
& pres( maxlev ), presa( maxlev ), presln( maxlev )
&, delprs( maxlev), scat( maxlev ), stntmp( maxlev )
&, tstd_av ( maxlev )

! end of include file grdcons.h

matcons.h — mathematical constants

! beginning of include file matcons.h
sk fe koo ok o o ook stk ok o o o ke ok sk sk sk s o o sk sk sk s o sk sk sk s o o koo o ook oo s ok stk s ok skskeokok ook skokok o ok
!
initialized in: matcon
used in: dattrf hirsrad sunang tovs_tau tovs_tauang
tovs_tauK dTb_dTQU

mathematical constants as used in gla retrievals
0 skt sk ok sk o o ok sk s ok sk sk sk sk sk ok sk s s ok sk sk stk sk sk sk sk ok sk sk sk sk ok sk skok sk sk ok skoeok sk s ok sk skok ok
|

real deg2rad ! convert degrees to radians
real pi ! pi
real pid2 ! pi/2
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real
real

rad2deg
twopi

convert radians to degrees
2 * pi

common /matcons/ deg2rad, pi, pid2, rad2deg, twopi

1ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok sk sk ok ok ok ok sk sk ok ok ok ok sk sk ok ok ok ok ok ok ok ok ok ke sk ok ok ok ok ok ok ok ok ok ok ok ok ok skok k

! end of include file

phycons.h — physical constants

! beginning of include file

matcons.h

phycons.h

1ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok sk sk ok ok ok ok sk sk ok ok ok ok sk sk ok ok ok ok ok ok ok ok ok ke sk ok ok ok ok ok ok ok ok ok ok ok ok ok skok k

real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real

common /phycons/

&
&
&

! end of include file

initialized in:
used in:

18May96 Meta S.

phycon

avogad
boltzmns
plancks
atmosph
bigbang
grav
clight
daymaxd
days_per_yr
declmax
plconi
plcon2
scon
shmin
sunset
tsun
airmol
h2omol
ozomol
gravcon
econ

avogad,

chacon dattrf hirsrad sunang tovs_h2o_tau
tovsh2o_tauK dTb_dTQU

physical constants used in GLA retrievals

added ’gravcon’, ’econ’ to common
s sk sk o o o ok sk sk sk o o ok ok sk sk sk o o s ok sk s ok stk s ok ok sk sk s ok ok stk sk ok sk stk sk ok ok sk sk sk sk o sk ok sk sk sk o o ke ok

Avogadro’s number

Boltzmann’s constant (joule/K)

Planck constant (joule sec)

standard atmosphere (mb)

Cosmic background bright. temp. (K)
acceleration from gravity (m/s)
velocity of light (cm/s)

date of maximum solar declin. angle
no. of days per year (non-leap year)
max solar declination angle

planck funct. const #1 (see in

planck funct. const #2 phycon.f)
pi * (Rsun/Rearth-orbit)”~2 steradians
Minimum specific humid. for rapid alg
limiting solar zen angle for sun calc.
Sun temperature

molecular weight of air

molecular weight of H20

molecular weight of 03

10 / grav - used in thickness calc.
(airmol/h2omol) /1013.25

boltzmns, plancks, atmosph, bigbang
, grav , clight , daymaxd , days_per_yr

, declmax , plconl , plcon2 ,
, tsun , airmol , h2omol , ozomol, gravcon, econ

scon, shmin, sunset

phycons.h
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taucoef.h — transmittance coefficients

! beginning of include file  taucoef.h

! initialized in: dattrf

! used in: tovs_tauang tovsfix_tau tovsh2o_tau tovsozo_tau
! tovs_tauK tovsfix_tauK tovsh2o_tauK tovsozo_tauk

! coefs for rapid algorithm computation of trans funs

common /taucoef/

$ taucfa ( maxlev, maxangs, maxcha )
$ , taucfb ( maxlev, maxangs, maxcha )
$ , taucfc ( maxlev, maxangs, maxcha )
$ , taucfd ( maxlev, maxangs, maxcha )
$ , taucfe ( maxangs, maxcha )
$ , taucff ( maxlev, maxangs, maxcha )
$ , taucfg ( maxangs, maxcha )
$ ., taucfm ( maxcha )
$ , taucfn ( maxcha )
$ , taucfw ( maxlev, maxangs, maxcha )
$ , numangs
$ , angle ( maxangs )
$ , secang ( maxangs )

double precision taucfa, taucfb, taucfc, taucfd, taucfe, taucff,
$ taucfg, taucfm, taucfn, taucfw

real angle
real secang
integer numangs

1ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok sk sk ok ok ok ok sk sk ok ok ok ok sk sk ok ok ok ok ok ok ok ok ok ke sk ok ok ok ok ok ok ok ok ok ok ok ok ok skok k
[}

! tau_fixed = a + b (t - to) + ¢ (t* - t*o)
! tau_h20 exp ( - (d (1 -e (t - 273)) h2omid##*m) + continuum term

! tau_ozone = exp ( - ( £ (1 - g (t - 273)) ozomid**n)
|

1 st sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok sk sk ok ok ok sk ok ok ok ok sk ok ok stk ok ok ok sk ok ok ok ok ok sk ok ok ok ok
! end of include file taucoef.h
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Fortran code

brtemp — Calculate brightness temperature

1ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok sk sk ok ok ok ok sk sk ok ok ok ok sk sk ok ok ok ok ok ok ok ok ok ke sk ok ok ok ok ok ok ok ok ok ok ok ok ok skok k
! ' BRTEMP

1ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok sk sk ok ok ok ok sk sk ok ok ok ok sk sk ok ok ok ok ok ok ok ok ok ke sk ok ok ok ok ok ok ok ok ok ok ok ok ok skok k
[}

!''ROUTINE: brtemp

]

'1DESCRIPTION: COMPUTES BRIGHTNESS TEMPERATURE FROM RADIANCE VIA
PLANCK FUNCTION. Derived from GLA retrieval code

]
!
! SYSTEM ROUTINES USED: none
]
! SUBROUTINES CALLED: none

]

!TNPUT PARAMETERS:
RAD real RADIANCE FOR TEMPERATURE COMPUTATION
UNITS WATTS/(CM**2-SR)
PLANK1 real WAVE NUMBER DEPENDENT CONSTANT
PLANK1 = 2 * VELLIGHT**2 * PLANCKCON / LAMDA*%3
PLANK1 = 1.193E-12/LAMDA**3 WATTS / (CM#*2 - SR)
WHERE
VELLIGHT

|

|

|

|

|

|

!

! 3.00E+10 CM/SEC

! PLANKCON = 6.63E-34 JOULES-SEC
! LAMDA = WAVE LENGTH IN CM

! PLANK2 real WAVE NUMBER DEPENDENT CONSTANT

! PLANK2 = PLANCKCON*VELLIGHT / (BOLTZMAN*LAMDA)
! PLANK2 = 1.441/LAMDA  DEG.K

! WHERE

! BOLTZMAN = 1.38E-23 JOULE / DEG.K
!''OUTPUT PARAMETERS:

! BT real Brightness temperature (K)

|

|

|

|

|

|

|

|

'REVISION HISTORY:
250CT84 JIMPF original program in GLA TOVS retrievals
11DEC89 SYLEE  UNVECTORIZED FULL PRECISION VERSION
26SEP95 Meta S. converted to DAD standard (implicit none)
100CT95 Meta S. revised prologue to DAO standard

sk ok ok o ok o K oK o oK ok o o oK o ok ok o ok ook o ok o o oK ok ok ok o oK o K oK K oK o K oK o K o K oK o K oK oK o K oK oK o oK o K ok K ok K o
subroutine brtemp ( rad, plankl, plank2, bt )
implicit none

real bt
real plankil
real plank2
real rad

1ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok sk sk ok ok ok ok sk sk ok ok ok ok sk sk ok ok ok ok ok ok ok ok ok ke sk ok ok ok ok ok ok ok ok ok ok ok ok ok skok k

! calculate brightness temperature
sk fe koo ok o o ook stk ok o o o ke ok sk sk sk s o o sk sk sk s o sk sk sk s o o koo o ook oo s ok stk s ok skskeokok ook skokok o ok

bt = plankl / rad
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bt

bt

bt
return
end

bt + 1.0
log ( bt )
plank2 / bt
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chacon — Set channel constants

1ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok sk sk ok ok ok ok sk sk ok ok ok ok sk sk ok ok ok ok ok ok ok ok ok ke sk ok ok ok ok ok ok ok ok ok ok ok ok ok skok k

! 'CHACON
1 sk ok s ok sk of ke ok sk ok e ok sk ok e ok sk ok e sk ok s ook ook s ok sk ok s ok ok sk ok e ok sk ok e e ok sk s e sk ook s o sk ok s sk ok sk ok s ok sk ok ok ok sk ok ke ok ok ok ok
]

VTROUTINE: chacon

I 'DESCRIPTION: Set channel constants for TOVS (HIRS/MSU) channels
! Based on GLA TOVS retrieval code (chacon,
! addcha, and related subroutines)

! SYSTEM ROUTINES USED: none
! SUBROUTINES CALLED: none

' INPUT PARAMETERS:
! satelite - character*2 identifier for satellite

!''OUTPUT PARAMETERS: none

! 'TREVISION HISTORY:

! 2bsep95 Meta S. original routine derived from subroutines

! CHACON and ADDCHA in GLA retrieval code

! 20feb96 Meta S. added central frequencies for NOAA-12 (ND)

! (Note, IR20 given dummy frequency - not listed
! in NDAA12 docs... wouldn’t use IR20 anyway.)
! NOTES:

! will need some revision to restore multiple satellites
ke e o o o o o o o o o o o o o e o o o o o o o s o o ok ok ok ok ok ok ok ok ok ok ok sk sk sk sk sk sk sk s s s sk ok ok ok ok ok ok ok ok ok ok ok ok ok

subroutine chacon (satelite)
1 s sk sk sk ok s sk o sk sk sk sk ok o s o sk sk sk sk ok s s o sk s sk sk sk sk ok s ok o sk o sk sk sk sk sk sk ok s s s sk s sk sk sk sk ok s ok s sk o sk sk sk sk sk sk ok o ke ok sk ok ok

implicit none

1 st sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok sk sk ok ok ok sk ok ok ok ok sk ok ok stk ok ok ok sk ok ok ok ok ok sk ok ok ok ok
! input variables
character*2 satelite ! identifier for satellite to use

1ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok sk sk ok ok ok ok sk sk ok ok ok ok sk sk ok ok ok ok ok ok ok ok ok ke sk ok ok ok ok ok ok ok ok ok ok ok ok ok skok k

include "tovsparam.h"
include "chacons.h"
include "phycons.h"

ke e o o o o o o o o o o o o o e o o o o o o o s o o ok ok ok ok ok ok ok ok ok ok ok sk sk sk sk sk sk sk s s s sk ok ok ok ok ok ok ok ok ok ok ok ok ok
!
! local variables
!
ke e o o o o o o o o o o o o o e o o o o o o o s o o ok ok ok ok ok ok ok ok ok ok ok sk sk sk sk sk sk sk s s s sk ok ok ok ok ok ok ok ok ok ok ok ok ok
integer ic
real tplconl, tplcon2

1ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok sk sk ok ok ok ok sk sk ok ok ok ok sk sk ok ok ok ok ok ok ok ok ok ke sk ok ok ok ok ok ok ok ok ok ok ok ok ok skok k
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! values for HIRS channels

|

! satellite dependent central frequencies of channels
real freqTN(20), freqNA(20), freqNC(20), freqNE(20) !frequency
real freqNF(20), freqNG(20), freqNH(20), freqND(20) ! cm™-1

real freqHRS (20)
real abscof_hrs(20)
real degchn_hrs(20)

frequency (cm™-1)
absorp. coeff for H20 continuum
dk/dT for H20 continuum

real contemp_hrs(20) ref T for H20 continuum
real em_land_hrs(20) emissivity for land
real em_water_hrs(20) emissivity for water

|
|
|
|
real chscat_hrs(20) ! aerosol scattering & absorp. coeff.
|
|
|

real dfx_hrs(20) downward flux coefficient

! values for MSU channels
real freqMSU(4)
real abscof_msu(4) absorp. coeff for H20 continuum
real degchn_msu(4) dk/dT for H20 continuum

!  frequency (GHz)

[}

[}
real contemp_msu(4) ! ref T for H20 continuum

[}

[}

[}

real chscat_msu(4) aerosol scattering & absorp. coeff.
real em_land_msu(4) emissivity for land (not used?)
real em_water_msu(4) emissivity for water (not used?)

real dfx_msu(4)

character*6 chans(24) ! channel identifier

HIRS/2 FREQUENCIES AND CHANNEL ID
TN(TIROS-N), NA(NOAA-6), NC(NOAA-7),
NE(NOAA-8), NF(NOAA-9), NG(NOAA-10),
NH(NOAA-11), ND(NOAA-12)

DATA  freqTN
/ 668.70, 679.05, 689.70, 703.80, 716.70,
731.85, 749.50, 900.00, 1030.00, 1225.00,
1365.00, 1488.00, 2192.50, 2211.65, 2237.35,
2271.20, 2308.85, 2512.00, 2660.00,14500.00/
DATA  freqNA
/ 667.95, 679.34, 689.99, 704.63, 717.75,
732.30, 749.16, 899.94, 1027.55, 1222.98,
1368.50, 1481.08, 2190.48, 2210.91, 2238.62,
2269.65, 2360.94, 2515.28, 2649.97,14500.00/
DATA  freqNC

* / 668.70, 681.00, 692.00, 705.00, 718.00,
* 734.00, 753.00, 904.00, 1028.00, 1229.00,
* 1360.00, 1483.00, 2181.00, 2211.00, 2241.00,
* 2260.00, 2360.00, 2515.00, 2660.00,14500.00/
DATA  freqlD
* / 667.58, 680.18, 690.01, 704.22, 716.32,
* 732.81, 751.92, 900.45, 1026.66, 1223.44,
* 1368.68, 1478.59, 2190.37, 2210.51, 2236.62,
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* 2267.62, 2361.64, 2514.68, 2653.48,14500.00/
DATA  freqNE
/ 667.41, 679.45, 690.90, 702.97, 717.56,
732.97, 747.90, 901.08, 1027.11, 1224.05,
1366.17, 1486.92, 2189.28, 2211.71, 2238.06,
2271.43, 2357.11, 2515.53, 2661.85,14355.00/
DATA  freqgNF
/ 667.67, 679.84, 691.46, 703.37, 717.16,
732.64, 749.40, 898.53, 1031.61, 1224.74,
1365.12, 1483.24, 2189.97, 2209.18, 2243.14,
2276.46, 2359.05, 2518.14, 2667.80,14549.27/
DATA  freqNG
/ 667.70, 680.23, 691.15, 704.33, 716.30,
733.13, 750.72, 899.50, 1029.01, 1224.07,
1363.32, 1489.42, 2191.38, 2208.74, 2237.49,
2269.09, 2360.00, 2514.58, 2665.38,14453.14/
DATA  freqNH
/ 668.99, 678.89, 689.70, 703.25, 716.83,
732.11, 749.48, 900.51, 1031.19, 795.69,
1361.10, 1479.86, 2189.94, 2209.66, 2239.26,
2267.80, 2416.32, 2511.83, 2664.07,14453.14/

* ¥ ¥ ¥ * ¥ ¥ ¥ * ¥ ¥ ¥

* ¥ ¥ ¥

1ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok sk sk ok ok ok ok sk sk ok ok ok ok sk sk ok ok ok ok ok ok ok ok ok ke sk ok ok ok ok ok ok ok ok ok ok ok ok ok skok k

DATA abscof_hrs
*/30.32232, 28.83525, 27.34284, 25.63885, 24.13291,
* 22.40358, 20.61069, 8.87156, 6.77743, 5.533819,

* 0.0, 0.0, 0.2740922, 0.2529629, 0.2265023,

* 0.1949478, 0.0, 0.06503328,0.06404681,0.0 /
DATA  degchn_hrs

x/ .02, .02, .02, .02, .02,

* .02, .02, .02, .02, .02,

* .0, .0, .010404, .0103655, .01030173,

* .01019153, .009672762,.007432, .0055279, .0 /

DATA  contemp_hrs
/ 303.00, 303.00, 303.00, 303.00, 303.00,
303.00, 303.00, 303.00, 296.00, 296.00,
0.00, 0.00, 338.00, 338.00, 338.00,
338.00, 0.00, 338.00, 338.00, 0.00/
DATA chscat_hrs

* ¥ X *

* / 1.00, 1.00, 1.00, 1.00, 1.00,

* 1.00, 1.00, 1.00, 1.00, 1.00,

* 1.00, 1.00, 3.00, 3.00, 3.00,

* 3.00, 3.00, 3.00, 3.00, 0.00/
DATA em_land_hrs

* / 0.95, 0.95, 0.95, 0.95, 0.95,

* 0.95, 0.95, 0.95, 0.95, 0.90,

* 0.90, 0.90, 0.85, 0.85, 0.85,

* 0.85, 0.85, 0.85, 0.85, 0.00/
DATA em_water_hrs

* / 0.98, 0.98, 0.98, 0.98, 0.98,
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* 0.98, 0.98, 0.98, 0.98, 0.98,

* 0.98, 0.98, 0.95, 0.95, 0.95,

* 0.95, 0.95, 0.95, 0.95, 0.00/
DATA dfx_hrs

* / 1.00, 1.00, 1.00, 1.00, 1.00,

* 0.71, 0.49, 1.00, 1.00, 1.00,

* 1.00, 1.00, 0.42, 0.55, 1.00,

* 1.00, 1.00, 0.95, 0.95, 1.00/

1ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok sk sk ok ok ok ok sk sk ok ok ok ok sk sk ok ok ok ok ok ok ok ok ok ke sk ok ok ok ok ok ok ok ok ok ok ok ok ok skok k

DATA freqMSU / 50.30, 53.74, 54.96, 57.95 /
DATA  abscof_msu / 4x0.00 /

DATA  degchn_msu / 4%0.00 /

DATA  contemp_msu / 4%x0.00 /

DATA  chscat_msu / 4x0.00 /

DATA em_land_msu / 4%x1.00 /

DATA em_water_msu / 4%1.00 /

DATA  dfx_msu / 4%0.95 /

data chans / ’IR(01)’,’IR(02)’,’IR(03)’,’IR(04)’,’IR(05)’,
& °’IR(06)’,’IR(07)’,’IR(08)’,’IR(09)’,’IR(10)’,’IR(11)",
& ’IR(12)’,°IR(13)’,’IR(14)’,’IR(15)’,’IR(16)’,’IR(17)’,’IR(18)’,
& °IR(19)’,’IR(20)’,’MW(01)’,’MW(02)’,’MW(03)’, MW (04)"’/

do ic = 1,24
write(chanid(ic),’(a2,a6)’) satelite,chans(ic)
enddo

IF ( satelite .EQ. TN’ ) THEN

DO ic =1, 20
freqHRS(ic) = freqTN(ic)
enddo
ELSE IF ( satelite .EQ. ’NA’ ) THEN
DO ic =1, 20
freqHRS(ic) = freqNA(ic)
enddo
ELSE IF ( satelite .EQ. ’NC’ ) THEN
DO ic =1, 20
freqHRS(ic) = freqNC(ic)
enddo
ELSE IF ( satelite .EQ. ’ND’ ) THEN
DO ic =1, 20
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freqHRS(ic) = freqlND(ic)

enddo
ELSE IF ( satelite .EQ. ’NE’ ) THEN
DO ic =1, 20
freqHRS(ic) = freqNE(ic)
enddo
ELSE IF ( satelite .EQ. ’NF’ ) THEN
DO ic =1, 20
freqHRS(ic) = freqNF(ic)
enddo
ELSE IF ( satelite .EQ. ’NG’ ) THEN
DO ic =1, 20
freqHRS(ic) = freqNG(ic)
enddo
ELSE IF ( satelite .EQ. °NH’ ) THEN
DO ic =1, 20
freqHRS(ic) = freqNH(ic)
enddo
ELSE
PRINT =, ’CHACON: UNKNOWN SATELLITE’
STOP 12
END IF

DO ic =1, 20
freq(ic)= freqHRS(ic)
TRCHAN(ic) = .true.
MWCHAN (ic) = .false.

enddo

TPLCON1 = PLCON1

TPLCON2 = PLCON2

do ic =1, 20
planck2(ic) = freq(ic)
planck1(ic) = planck2(ic) * planck2(ic)
plancki(ic) = tplconl * planck2(ic) * planckl(ic)
planck2(ic) = tplcon2 * planck2(ic)
abscof(ic) = abscof_hrs(ic)
degchn(ic) = degchn_hrs(ic)
contmp(ic) = contemp_hrs(ic)
chscatt(ic) = chscat_hrs(ic)
em_land(ic) = em_land_hrs(ic)
em_water(ic) = em_water_hrs(ic)
dfxcon(ic) = dfx_hrs(ic)
use_refl(ic) = .false.

enddo

c '"optically thin" HIRS channels which use integrated radiance (reflected
c from surface) in downward flux calculation.
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use_refl(8) =.true.
use_refl(10) =.true.
use_refl(18) =.true.
use_refl(19) =.true.

DO ic =1, 4
freq(ic+20)= freqMSU(ic)
IRCHAN(ic+20) = .false.
MWCHAN (ic+20) = .true.
enddo

GLA rets had remark about ’old gridding program’ and filled in
different constants for PLCON1 and PLCON2; +this has the same
constants as for IR, but they are not used anyway.

TPLCON1 = PLCON1
TPLCON2 = PLCON2
do ic =21, 24

planck2(ic) = freq(ic)
planck1(ic) = planck2(ic) * planck2(ic)

plancki(ic) = tplconl * planck2(ic) * planckl(ic)
planck2(ic) = tplcon2 * planck2(ic)
abscof(ic) = abscof_msu(ic-20)
degchn(ic) = degchn_msu(ic-20)
contmp(ic) = contemp_msu(ic-20)
chscatt(ic) = chscat_msu(ic-20)
em_land(ic) = em_land_msu(ic-20)
em_water(ic) = em_water_msu(ic-20)
dfxcon(ic) = dfx_msu(ic-20)
use_refl(ic) = .false.

enddo

100 continue

return
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dattrf.f — Set up transmittance coefficients

1ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok sk sk ok ok ok ok sk sk ok ok ok ok sk sk ok ok ok ok ok ok ok ok ok ke sk ok ok ok ok ok ok ok ok ok ok ok ok ok skok k

''DATTRF
1 sk ok s ok sk of ke ok sk ok e ok sk ok e ok sk ok e sk ok s ook ook s ok sk ok s ok ok sk ok e ok sk ok e e ok sk s e sk ook s o sk ok s sk ok sk ok s ok sk ok ok ok sk ok ke ok ok ok ok
]

'''"ROUTINE: dattrf

V''DESCRIPTION: Read rapid algorithm transmittance function coefficients
Fills common block /taucoef/

Based on GLA TOVS retrieval code (dattrf and
related subroutines)

SYSTEM ROUTINES USED: dexp, dlog, cos
SUBROUTINES CALLED: none

INPUT/OUTPUT FILES USED
TRCOEF ITRFDAT RAPID ALGORITH TRANS. FUN. DATA SET

|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
! 'INPUT PARAMETERS:
! itrfdat - integer unit number for input file
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

! 'OUTPUT PARAMETERS:
ierr - integer error flag 0 = successful
error reading dataset
fewer than 24 channels found

N =
n n

! 'REVISION HISTORY:
22s5ep95 Meta S. original routine derived from subroutine dattrf
in GLA retrieval code
16apr96 Meta S. slight modification, clarification, add error flag
13jul96 Meta S. changed do-loops to remove statement numbers

REMARKS:
some changes will need to be made to accomodate multiple
satellites
s sk sk o o o ok sk sk sk o o ok ok sk sk sk o o s ok sk s ok stk s ok ok sk sk s ok ok stk sk ok sk stk sk ok ok sk sk sk sk o sk ok sk sk sk o o ke ok

subroutine dattrf(itrfdat, ierr)

implicit none
integer itrfdat
integer ierr
0 sk sk ok sk sk sk s o s o ok sk sk sk sk o s o ok ok sk sk sk s s ok sk sk sk s o s sk sk sk s o s o ki sk o s o ok sk s o s ok ok sk o s ok sk sk sk sk ok sk sk sk sk ok ok
include "tovsparam.h"
include "chacons.h"

include "matcons.h"

include "phycons.h"

44



include "taucoef.h"
1 st sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok sk sk ok ok ok sk ok ok ok ok sk ok ok stk ok ok ok sk ok ok ok ok ok sk ok ok ok ok

coefficients for rapid transmittance algorithm

tau_ozone = exp ( - ( F (1 - G (T - 273)) ozomid*#*N) (ON-9608, eq33)

]

! zao, zbo, zco, zdo, zfo : "old" values read from file from OLDLEV level fit
! za, zb, zc, zd, zf : transformed to maxlev level

! zZe, zg : other coefficients

]

! tau_fixed = A + B (T - To) + C (T* - T*o0) (ON-9608, eq26)

! tau_h20 =-exp (- (D (1 -E (T - 273)) h2omid**M) (ON-9608, eq32)

]

]

]

sk ok ok o ok o K oK o oK ok o o oK o ok ok o ok ook o ok o o oK ok ok ok o oK o K oK K oK o K oK o K o K oK o K oK oK o K oK oK o oK o K ok K ok K o
integer oldlev
parameter (oldlev = 66)
CHARACTER*8 ZCHANID

DIMENSION ZA ( maxlev , maxangs )
DIMENSION zZA ( maxlev , maxangs )
DIMENSION ZB ( maxlev , maxangs )
DIMENSION ZC ( maxlev , maxangs )
DIMENSION ZD ( maxlev , maxangs )
DIMENSION ZE ( maxangs )

DIMENSION ZF ( maxlev , maxangs )
DIMENSION ZG ( maxangs )

DIMENSION ZAO ( OLDLEV , maxangs )
DIMENSION ZBO ( OLDLEV , maxangs )
DIMENSION ZCO ( OLDLEV , maxangs )
DIMENSION ZDO ( OLDLEV , maxangs )
DIMENSION ZFO ( OLDLEV maxangs )

DOUBLE PRECISION ZA, ZB, ZC, ZD, ZE, ZM, ZF, ZG, ZN, ZQ,
* ZAO, ZBO, ZCO, ZDO0, ZF0,zza, zzm, zzn
integer ii,jj,n,1,k

integer nfound ! counter for no. of channels

integer yang ! number of coeff. input angles

integer ylev ! number of coeff. input levels

ierr = 0
1 st sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok sk sk ok ok ok sk ok ok ok ok sk ok ok stk ok ok ok sk ok ok ok ok ok sk ok ok ok ok

! set up angles used in rapid algorithm
0 skt sk ok sk o o ok sk s ok sk sk sk sk sk ok sk s s ok sk sk stk sk sk sk sk ok sk sk sk sk ok sk skok sk sk ok skoeok sk s ok sk skok ok

NUMANGS =3

ANGLE(1) = 0.0

ANGLE(2) = 50.0

ANGLE(3) = 75.0

DO II = 1, NUMANGS
ANGLE(II) = ANGLE(II) % DEG2RAD
SECANG(II) = CO0S( ANGLE(II) )
SECANG(II) = 1.0 / SECANG(II)

enddo



READ DATA FOR NEXT CHANNEL FROM TRCOEF
REWIND ITRFDAT
nfound =0

100 CONTINUE

READ ( ITRFDAT, END=600,ERR=500) ZCHANID, N, YANG, N, YLEV,

$ ZM, ( ZE(N), N = 1, YANG ),

$ ZN, ( ZG(N), N = 1, YANG ),

$ ( ( zao(L,N), ZBO(L,N), ZCO(L,N), ZDO(L,N), ZFO(L,N),

$ L =1, YLEV ), N = 1, YANG )
if ((YANG .NE. 3 ) .or.

$ (YLEV .NE. OLDLEV ) ) go to 100

we have proper number of coefficients; convert from old 66 levels
to new 71 levels

SHIFT OLDLEV(66) TO NEW MAXLEV(71) FOR ZA ZB ZC ZD ZF
coefficients zao, zbo, zco, zdo, zfo are at old 66 levels

! the formula 1n ZA(1) = .1 1n ZAO(1) for 0.1 MB

! the formula 1ln ZA(ii) = .3 1n ZAO(1) for 0.4, 0.7, 1.0 MB

! the formula 1n ZA(5) .3 1n ZAO(2) for 1.3 MB

! the formula 1n ZA(6) .4 1n ZAO(2) for 1.7 MB

! the formula 1n ZA(7) .3 1n ZAO(2) for 2.0 MB

! set ZB, ZC, ZD, ZF = 0.0 from 0.1 MB to 2.0 MB

! make this change for new MAXLEV jack maa 4/27/92

do jj = 1, yang
if (ZAO(1,jj) .ne. 0.0) then
ZA(1,jj) = DEXP(0.1 * DLOG(ZAO(1,jj)))
do ii=2,4
ZA(ii,35)
end do
else
do ii=1,4
ZA(ii,35)
end do
end if
if (ZA0O(2,jj) .ne. 0.0) then
ZA(5,jj) = DEXP(0.3 * DLOG(ZA0(2,jj)))
ZA(6,jj) = DEXP(0.4 * DLOG(ZA0(2,jj)))
ZA(7,jj) = DEXP(0.3 * DLOG(ZAD(2,33)))
else
do ii=5,7
ZA(ii,jj) = 0.0
end do
end if
do ii=1,7
ZB(ii,jj) = 0.0

DEXP(0.3 * DLOG(ZAO(1,jj)))

"
(@]
(@]
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ZC(ii,jj) = 0.0
ZD(ii,jj) = 0.0
ZF(ii,jj) = 0.0
end do
do ii=1, OLDLEV - 2
ZA(ii+7,33) = ZAO(ii+2,jj)
ZB(ii+7,jj) = ZBO(ii+2,jj)
ZC(ii+7,j3) = ZCO(ii+2,jj)
ZD(ii+7,jj) = ZDO(ii+2,jj)
ZF(ii+7,j3) = ZFO(ii+2,jj)
end do
end do

look for matching ’chanid’ to find
! which slot to copy the coefficients into

DO K = 1, maxcha
IF ( ZCHANID .EQ. CHANID(K)) THEN
CHANGE UNITS AND TRANSFER COEFFICIENTS TO COMMON /TRCOEF/

zZM, zZN conversion factors from g/cm™2 to molecules/cm”2
raised to the power M or N as appropriate

TAUCFM(K) = ZM
IF ( ZM .LT. 0.99 ) THEN

ZZM = ( AVOGAD / H20MOL )**ZM
ELSE

zZM = ( AVOGAD / H20MOL )
ENDIF
TAUCFN (K) = ZN
IF ( ZN .LT. 0.99 ) THEN

zZN = ( AVOGAD / OZOMOL )**ZN
ELSE

zZN = ( AVOGAD / 0ZOMOL )
ENDIF

in code portion below...
zZA -> TAUCFW calculation of d tau“o/dp (not fct. of temperature)
part of equation (A6) in Susskind et al 1983

the 1/(1-tau”o) is included in TAUCFC (i.e. Cij of eqn A7)

DO N = 1, NUMANGS
TAUCFE(N,K) = ZEQN)
TAUCFG(N,K) = ZGQN)
zQ = 0.0
DO L =1, maxlev

TAUCFA(L,N,K)= ZA(L,N)
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TAUCFB(L,N,K)= ZB(L,N)

zZA(L,N) = (1.0 - 2ZQ) * (1.0 - ZA(L,N))
TAUCFW(L,N,K)= zZA(L,N)
ZQ = ZQ + zZA(L,N)

IF ( ZQ .GT. 0.0001 ) THEN
TAUCFC(L,N,K)= ZC(L,N) / ZQ
ELSE
TAUCFC(L,N,K)= 0.0
ENDIF
TAUCFD(L,N,K)= ZD(L,N) * zZM
TAUCFF(L,N,K)= ZF(L,N) * zZN
ENDDO
ENDDO

channel slot was found, go back and read another record
GOTO 100
ENDIF

enddo

(S

ierr =

600 CONTINUE
IF ( nfound .LT. 24 ) then
print *, ’error reading dataset’
ierr = 2
endif
close ( itrfdat )
RETURN
END
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grdcon.f — Set vertical grid constants

1ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok sk sk ok ok ok ok sk sk ok ok ok ok sk sk ok ok ok ok ok ok ok ok ok ke sk ok ok ok ok ok ok ok ok ok ok ok ok ok skok k

! '{GRDCON
1 sk ok s ok sk of ke ok sk ok e ok sk ok e ok sk ok e sk ok s ook ook s ok sk ok s ok ok sk ok e ok sk ok e e ok sk s e sk ook s o sk ok s sk ok sk ok s ok sk ok ok ok sk ok ke ok ok ok ok
]

'''"ROUTINE: grdcon

''DESCRIPTION: SETS VERTICAL GRID CONSTANTS for 71 level
GLA rapid transmittance algorithm
initializes common block /GRDCONS/

Adapted from GLA TOVS retrieval code
(subroutines grdcon and retini)

SYSTEM ROUTINES USED: alog

'1INPUT PARAMETERS: none
V1QUTPUT PARAMETERS: none - sets common block GRDCONS

! 'REVISION HISTORY:
225ep95 Meta S. original routine adapted from GLA TOVS grdcon and retini
18May96 Meta S. Add calculation for delprs - moved from tovsh2o_tau

|
|
|
|
|
|
|
|
|
1
! SUBROUTINES CALLED: none
|
|
|
|
|
|
|
|
1
0 skt sk ok sk o o ok sk s ok sk sk sk sk sk ok sk s s ok sk sk stk sk sk sk sk ok sk sk sk sk ok sk skok sk sk ok skoeok sk s ok sk skok ok
subroutine grdcon

implicit none

include "tovsparam.h"
include "phycons.h"
include "grdcons.h"

integer 1

1ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok sk sk ok ok ok ok sk sk ok ok ok ok sk sk ok ok ok ok ok ok ok ok ok ke sk ok ok ok ok ok ok ok ok ok ok ok ok ok skok k

! 71 pressure levels
data pres
/ 0.1, 0.4, 0.7, 1.0, 1.3, 1.7,

5., 6., 7., 8., 9., 10.,
15., 20., 30., 40., 50., 60.,
70., 80., 90., 100., 110., 120.,

130., 140., 150., 160., 170., 180.,
190., 200., 220., 240., 260., 280.,
300., 320., 340., 360., 380., 400.,
425., 450., 475., 500., 525., 550.,
575., 600., 625., 650., 675., 700.,
725., 750., 775., 800., 825., 850.,
875., 900., 925., 950., 975.,1000.,
1025.,1050. /

P € 6 A P H L L P PH L PP
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! reference temperature for 71 levels

data stntmp
$ /221.6, 254.8, 264.4, 266.5, 265.0, 261.8,
$ 259.7, 251.4, 246.1,
$ 242.2, 239.2, 236.6, 234.4, 232.5, 230.8,
$ 228.0, 224.5, 221.0, 217.0, 213.5, 210.6,
$ 208.1, 206.8, 206.5, 206.1, 206.6, 207.9,
$ 209.0, 210.1, 211.0, 212.2, 213.4, 214.7,
$ 215.8, 216.9, 219.3, 222.9, 226.2, 229.3,
$ 232.1, 235.2, 238.5, 241.6, 244.5, 247.3,
$ 250.2, 253.3, 256.3, 259.0, 261.6, 263.9,
$ 266.1, 268.2, 270.3, 272.2, 274.1, 275.9,
$ 277.5, 278.9, 280.3, 281.6, 282.9, 284.2,
$ 285.3, 286.3, 287.2, 288.2, 289.1, 290.0,
$ 290.8, 291.7 /

|

! aerosol scattering factor for 71 levels
data scat
$ /0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000,
$ 0.00000, 0.00000, 0.00000,
$ 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000,
$ 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00022,
$ 0.00058, 0.00091, 0.00121, 0.00143, 0.00167, 0.00186,
$ 0.00207, 0.00222, 0.00238, 0.00254, 0.00271, 0.00292,
$ 0.00300, 0.00300, 0.00300, 0.00300, 0.00300, 0.00300,
$ 0.00300, 0.00300, 0.00300, 0.00300, 0.00300, 0.00300,
$ 0.00300, 0.00300, 0.00300, 0.00306, 0.00312, 0.00318,
$ 0.00325, 0.00331, 0.00340, 0.00354, 0.00368, 0.00381,
$ 0.00409, 0.00438, 0.00446, 0.00501, 0.00560, 0.00619,
$ 0.00678, 0.00741, 0.00864, 0.00988, 0.01112, 0.01236,
$ 0.01359, 0.01483 /

calculate layer average of standard temperature and of rapid alg. pressures
and layer difference in pressure (times a constant)

NOTE: gravcon is set in phycon.f which must be called prior to this

routine
tstd_av(1) = stntmp(1)
presa(l) = 0.50*pres(1)
delprs(1) = pres(1) * gravcon
do 1 = 2, maxlev
presa(l) = 0.5 * ( pres(l-1) + pres(1l) )
tstd_av(l) = 0.5 * ( stntmp(l-1) + stntmp(l) )
delprs(l) = (pres(l) - pres(l-1)) * gravcon
enddo

50



|
! calculate logarithm of rapid algorithm pressure level values
|
do 1 =1, maxlev
presln(l) = alog ( pres (1) )
enddo

return
END
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hirsrad.f — Calculate radiance

1ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok sk sk ok ok ok ok sk sk ok ok ok ok sk sk ok ok ok ok ok ok ok ok ok ke sk ok ok ok ok ok ok ok ok ok ok ok ok ok skok k

! 'HIRSRAD

1ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok sk sk ok ok ok ok sk sk ok ok ok ok sk sk ok ok ok ok ok ok ok ok ok ke sk ok ok ok ok ok ok ok ok ok ok ok ok ok skok k

]
! 'ROUTINE:

!''DESCRIPTION:

hirsrad

Calculate radiance from input temperature, specific

humidity, ozone using input transmittance functions

Based on GLA TOVS retrieval code (vecrad and
related subroutines)

SYSTEM ROUTINES USED: cos

SUBROUTINES CALLED: planck

!''INPUT PARAMETERS:

tau
tausun

nchan
chanarr

tair
tmptop
ir_zen
emissmw
land

rho
sunzang
dayflag
tground
tsurfair

real array (of size maxlev by maxcha) of transmittance
real array (of length maxcha) of transmittance along
solar path to Earth’s surface
integer number of channels to calculate
integer array (of length maxcha) of channels to calculate
1-20 -> HIRS2 ch 1-20; 21-24 -> MSU 1-4
real array (of length maxlev) with temperature profile (K)
real temperature (K) at "top of atmosphere"
real satellite zenith angle for infrared channels (degrees)
real microwave emissivity
logical flag (.true. if land, .false. if water)
real number of levels to use in profiles
real bidirectional reflectance
real solar zenith angle (degrees)
logical flag for day/night (.true. if day, .false. if night)
real skin (ground) temperature (K)
real surface air temperature (K)

!''OUTPUT PARAMETERS:

calc_rad

- real array (of length maxcha) of radiance (or brightness
temperatures, for MSU channels ) calculated from profile
for channels input in ’chanarr’

'"REVISION HISTORY:

08sep95
03o0ct95

15dec95
17apr96

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
! nlev
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
!
!

M

M

M
M

eta S. original routine derived from subroutine vecrad
in GLA retrieval code
eta S. make solar calculation (which was borrowed from
GLA routine grtemp) more consistent with
solar calculations in tovs_tauang. Revised prologue.
eta S. ensure rad_down is initialized
eta S. *Input arguments changed* so multiple channels can
be calculated with a single subroutine call
(requested "optimization" change)
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subroutine hirsrad(tau,tausun,nchan,chanarr,tair,tmptop,ir_zen,
& emissmw, land, nlev, rho, sunzang, dayflag, tground,

& tsurfair, calc_rad)

implicit none

include "tovsparam.h"

input variables

real
real
integer
integer
real
real
real
real
logical
integer
real
real
logical
real
real

tau(maxlev,maxcha)
tausun(maxcha)
nchan

chanarr (maxcha)
tair(maxlev)

tmptop
ir_zen
emissmw
land
nlev

rho
sunzang
dayflag
tground
tsurfair

output variable

real

calc_rad(maxcha)

function types

real
parameters
include

include
include

planck
from common
"phycons.h"

""chacons.h"
"matcons.h"

local variables

real
real
real
real
integer
real
real
logical
real
real
integer
real
real
real
real

angsun
btav
btgnd
btsurf
chan
crad
deltau
dosun
dtauinv
emiss
i,l
pconl
pcon2
rad_down
rad_sun

blackbody temp. of avg layer temperature

blackbody temp. of ground temperature

blackbody temp. of surface air temperature
channel counter

partial sum for radiance

difference of transmittance in layer

inverse transmittance difference

sfc emissivity for this sounding
counter

atmos. emission downward flux
solar radiation at TOA (7)
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real rhosec
real sunterm ! solar contribution to calc. radiance
real tav(maxlev) ! mean layer temperature array

tav(1l) = 0.5 * (tair(1) + tmptop)
do 1 = 2,nlev
tav(l) = 0.5 * (tair(1-1) + tair(l))
enddo
do i = 1,nchan

chan = chanarr(i)

dosun = ( freq(chan) .gt. 2000. ) .and. dayflag

pconl = planckl(chan)
pcon2 = planck2(chan)

if (irchan(chan)) then

! initialize radiance sum
deltau = 1.0 - tau(l,chan)
btav = planck(tav(1l), pconl, pcon2)
crad btav * deltau

! integrate through atmosphere (from top down)
do 1 = 2,nlev
btav = planck(tav(l), pconl, pcon2)
deltau = tau(l-1,chan) - tau(l,chan)
crad = crad + btav * deltau
enddo

! prepare to calculate surface contribution
btsurf = planck(tsurfair, pconl, pcon2)
btgnd = planck(tground, pconl, pcon2)
rad_down = dfxcon(chan) * btsurf * (1. - tau(nlev, chan))
if (land) then
emiss = em_land(chan)
else
emiss = em_water(chan)
endif

else if (mwchan(chan)) then

! initialize radiance sum

btav = tav(1l)

deltau = 1.0 - tau(l,chan)

rad_down = 0.0

if (tau(l,chan) .ne. 0.0) then
dtauinv = (1. / tau(l,chan)) - 1.
rad_down = dtauinv * btav

endif
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crad = btav * deltau

! integrate through atmosphere (from top down)
do 1 = 2,nlev
btav = tav(l)
deltau = tau(l-1,chan) - tau(l,chan)
if ((tau(l,chan) .ne. 0.0 ) .and.

& (tau(l-1,chan) .ne. 0.0) ) then
dtauinv = ( 1. / tau(l,chan)) - ( 1./ tau(l-1,chan))
rad_down = rad_down + dtauinv * btav

endif
crad = crad + btav * deltau
enddo

! prepare to calculate surface contribution
btsurf = tsurfair
btgnd = tground
rad_down = (rad_down + bigbang) * tau(nlev,chan)
emiss = emissmw

endif

if (use_refl(chan)) then
crad = crad + tau(nlev, chan) *

& (cos(ir_zenxdeg2rad)*crad*(1.-emiss)*(dfxcon(chan)*2.0)
& + emiss * btgnd)
else
crad = crad + tau(nlev, chan) *
& (rad_down + emiss * ( btgnd - rad_down ))
endif

! Add solar contribution for wavenumber greater than 2000.0

if (dosun) then

if (sunzang .le. sunset) then
angsun = sunzang * deg2rad

else
angsun

endif

rhosec = rho * cos(angsun)

rad_sun = scon * planck(tsun, pconl, pcon2)

sunterm = rhosec * rad_sun * tausun(chan)

89.9e0 * deg2rad

crad = crad + sunterm
endif

calc_rad(chan) = crad
enddo

return
end
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initial GLA.f — Sample initialization code

1ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok sk sk ok ok ok ok sk sk ok ok ok ok sk sk ok ok ok ok ok ok ok ok ok ke sk ok ok ok ok ok ok ok ok ok ok ok ok ok skok k

'MINITTALGLA
1 sk ok s ok sk of ke ok sk ok e ok sk ok e ok sk ok e sk ok s ook ook s ok sk ok s ok ok sk ok e ok sk ok e e ok sk s e sk ook s o sk ok s sk ok sk ok s ok sk ok ok ok sk ok ke ok ok ok ok

]
! 'ROUTINE:

!''DESCRIPTION:

initialGLA

*Sample* routine to carry out initialization

of variables ... derived from code fragments in

test routines

SYSTEM ROUTINES USED:

SUBROUTINES CALLED:

matcon
phycon
grdcon
chacon
dattrf

- SETS MATH CONSTANTS FOR
- SETS PHYSICAL CONSTANTS

RETRIEVALS
FOR RETRIEVALS

- SETS VERTICAL GRID CONSTANTS
- Set channel constants for TOVS (HIRS/MSU) channels
- Read rapid algorithm transmittance function coefficients

! FILES NEEDED: "bland" land/water flags

! 'INPUT PARAMETERS:
- integer unit number for input file

satelite

- character#*2 identifier

!''OUTPUT PARAMETERS:

bland

ierr

- logical array (of size
for land and water

- 1integer error flag for

O_

1
9 -

'"REVISION HISTORY:

29n0ov95
28mar96
19may96

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
! itrfdat
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Meta S. original routine

Meta S. added prologue

Meta S. shifted order of
phycon (before

for satellite

360 by 180) of 1X1 degree flags

transmittance coeffs
successful read

error reading dataset

less than 24 channels found

subroutine calls: matcon before
grdcon)
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subroutine initialGLA(itrfdat,satelite,bland,ierr)

character*2 satelite
integer itrfdat
logical bland(360,180)
integer ierr
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integer 1i,j
initialize constants, physical, mathematical, and vertical grid related
call matcon
call phycon
call grdcon

read in land/water flag dataset

the following statement will need to be changed for the operational
system to access a more general input dataset

open(31,file=’/fordl/local/new-data-types/gla-tovs/data/bland’,

& form=’formatted’,status=’0ld’)
do i1 =1,360
read(31,’(18011)’) (bland(i,j),j=1,180)
enddo

initialize channel-related constants, read in transmittance coefficients

call chacon(satelite)
call dattrf(itrfdat,ierr)

return
end
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matcon.f — Set up mathematical constants

1ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok sk sk ok ok ok ok sk sk ok ok ok ok sk sk ok ok ok ok ok ok ok ok ok ke sk ok ok ok ok ok ok ok ok ok ok ok ok ok skok k

! 'MATCON
1 sk ok s ok sk of ke ok sk ok e ok sk ok e ok sk ok e sk ok s ook ook s ok sk ok s ok ok sk ok e ok sk ok e e ok sk s e sk ook s o sk ok s sk ok sk ok s ok sk ok ok ok sk ok ke ok ok ok ok
]

!''ROUTINE: MATCON
]

''DESCRIPTION: SETS MATH CONSTANTS FOR RETRIEVALS

SYSTEM ROUTINES USED: none

SUBROUTINES CALLED: none

'INPUT PARAMETERS: none

'OUTPUT PARAMETERS: none

'REVISION HISTORY:
lnov84 Jim Pf. original routine in GLA retrival code
15sep95 Meta S. change common /matcons/ to include

only trigonometric constants
0 skt sk ok sk o o ok sk s ok sk sk sk sk sk ok sk s s ok sk sk stk sk sk sk sk ok sk sk sk sk ok sk skok sk sk ok skoeok sk s ok sk skok ok

SUBROUTINE MATCON

implicit none

include "matcons.h"

PI = 3.141592654
DEG2RAD = PI / 180.0
PID2 =PI / 2.0
RAD2DEG = 180.0 / PI
TWOPI = PI + PI
RETURN

END
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phycon.f — Set up physical constants

1ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok sk sk ok ok ok ok sk sk ok ok ok ok sk sk ok ok ok ok ok ok ok ok ok ke sk ok ok ok ok ok ok ok ok ok ok ok ok ok skok k

11 PHYCON
1 sk ok s ok sk of ke ok sk ok e ok sk ok e ok sk ok e sk ok s ook ook s ok sk ok s ok ok sk ok e ok sk ok e e ok sk s e sk ook s o sk ok s sk ok sk ok s ok sk ok ok ok sk ok ke ok ok ok ok
]

!''ROUTINE: PHYCON
]

! '\ DESCRIPTION: SETS PHYSICAL CONSTANTS FOR RETRIEVALS
fills GLA common ’phycons’

SYSTEM ROUTINES USED: NONE
SUBROUTINES CALLED: NONE

!TNPUT PARAMETERS: none

'REVISION HISTORY:

2Apr85 Jim Pf. original routien in GLA retrieval code
155ep95 Meta S. reformatted original GLA routine
28mar95 Meta S. removed some unsed constants,

added some comments
18may95 Meta S. move some 'constants' from tovsh2o_tau

|
|
|
|
|
|
|
!
! '0UTPUT PARAMETERS: none, fills GLA common ’phycons’
|
|
|
|
|
|
|
|
|

sk sk sk o o s ok sk sk sk s o s o ok sk sk sk sk o o o sk s o s ok sk o s o ok sk sk sk sk o ok sk sk sk sk ok sk sk sk sk ok sk sk sk sk ke sk sk sk sk o o sk
subroutine phycon
implicit none

include "matcons.h"
include "phycons.h"

! local variables

real radsun ! Sun’s radius
real radeorb ! radius of Earth’s orbit around Sun
!
D sk sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ke ok sk ok ok ok ok ok ok sk stk ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok okok ok

avogad = 6.022045e+23 ! molecules/mole
boltzmns = 8.317e0 / avogad ! Joule / Kelvin
clight = 2.9979e+10 ' cm s~ {-1}
declmax = 23.45 ! degrees
plancks = 6.626176e-34 ! Joule-sec
radeorb = 149.57e+09 ! meters

radsun = 0.69595e+09 ! meters

atmosph = 1013.25 ! millibars
bigbang = 2.7 ! Kelvin

grav = 9.80665 ' m s~{-2}
daymaxd = 173.0
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days_per_yr = 365.0

shmin = 2.0e-06 ! kg air / kg H20

sunset = 85.0e0 ! degrees

tsun = 5600.0e0 ! Kelvin

airmol = 28.8e0 ! g mo1~{-1}

h2omol = 18.0e0 ! g mo1~{-1}

ozomol = 48.0e0 ! g mo1~{-1}
derived constants

scon = pi * ( radsun / radeorb )**2 ! steradian

plconi = 2.0 * plancks * clight * clight

plcon2 = plancks * clight / boltzmns

gravcon = 10. / grav

econ = airmol / (h2omol * atmosph)

RETURN

END
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planck.f — Calculate Planck function

1ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok sk sk ok ok ok ok sk sk ok ok ok ok sk sk ok ok ok ok ok ok ok ok ok ke sk ok ok ok ok ok ok ok ok ok ok ok ok ok skok k

! 1PLANCK
1 sk ok s ok sk of ke ok sk ok e ok sk ok e ok sk ok e sk ok s ook ook s ok sk ok s ok ok sk ok e ok sk ok e e ok sk s e sk ook s o sk ok s sk ok sk ok s ok sk ok ok ok sk ok ke ok ok ok ok
]

!''ROUTINE: PLANCK
]

!''DESCRIPTION: COMPUTES RADIANCE FROM TEMPERATURE VIA PLANCK FUNCTION
SYSTEM ROUTINES USED: none
SUBROUTINES CALLED: none

!INPUT PARAMETERS:
temp real Temperature (K)
PLANK1 real WAVE NUMBER DEPENDENT CONSTANT
PLANK1 = 2 * VELLIGHT**2 * PLANCKCON / LAMDA**3
PLANK1 = 1.193E-12/LAMDA**3 WATTS / (CM#%2 - SR)

WHERE
VELLIGHT = 3.00E+10 CM/SEC
PLANKCON = 6.63E-34 JOULES-SEC
= WAVE LENGTH IN CM

PLANK2 real WAVE NUMBER DEPENDENT CONSTANT
PLANK2 = PLANCKCON*VELLIGHT / (BOLTZMAN*LAMDA)
PLANK2 = 1.441/LAMDA  DEG.K
WHERE
BOLTZMAN = 1.38E-23 JOULE / DEG.K
'0UTPUT PARAMETERS:
PLANCK real blackbody radiance for given temperature
UNITS WATTS/(CM**2-SR)

'REVISION HISTORY:
250ct1984 Jim Pf. original routine VPLANCK in GLA retrieval code
110ct1995 Meta S. added DAO prologue

[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
]
! LAMDA
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
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real FUNCTION PLANCK(temp,PLANCK1,PLANCK2)
implicit none
|
! STATEMENT FUNCTION FOR PLANCK FUNCTION
|
real temp
real plancki
real planck2

PLANCK = PLANCK1/(EXP (PLANCK2/temp)-1.0)

RETURN
END
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tovsfix_tau.f — Fixed gas transmittance contribution

1ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok sk sk ok ok ok ok sk sk ok ok ok ok sk sk ok ok ok ok ok ok ok ok ok ke sk ok ok ok ok ok ok ok ok ok ok ok ok ok skok k

"' TOVSFIX_TAU
1 sk ok s ok sk of ke ok sk ok e ok sk ok e ok sk ok e sk ok s ook ook s ok sk ok s ok ok sk ok e ok sk ok e e ok sk s e sk ook s o sk ok s sk ok sk ok s ok sk ok ok ok sk ok ke ok ok ok ok
]

VIROUTINE: tovsfix_tau

''DESCRIPTION: Calculate contribution to transmittance by fixed gases
using rapid transmittance algorithm coefficients
- reference Susskind, et al. 1983 JGR, p 8565

CALLED FROM: tovs_tau
SYSTEM ROUTINES USED: none
SUBROUTINES CALLED: none

|

|

|

|

|

|

|

|

|

|

|

!

! 'INPUT PARAMETERS:

! tdif - real array (of length nlev) with difference between
! current best estimate of layer mean temperatures and
! standard atmosphere layer mean temperatures (K)
! chan - integer channel number

! nlev - integer surface level (also number of levels to use)
|
|
|
|
|
|
|
|
|
|
|

! IOUTPUT PARAMETERS:
taufix - real array of effective mean layer transmittance
for fixed gases

' 'REVISION HISTORY:
07sep95 Meta S. original routine derived from subroutine tmptau
in GLA retrieval code
18may96 Meta S. effTdif need not be saved as fct. of angle

B e s o o o o o o o o o o o o o o o o o o o o o o o o o o ok ok ok ok ok ok ok ok ok sk sk sk sk sk sk sk sk s o o o s ok o ok ok ok ok ok ok ok ok ok ok ok ok ok ok
subroutine tovsfix_tau(tdif, chan, nlev, taufix)

implicit none
include "tovsparam.h"
! variables passed into routine

integer nlev, chan
real tdif(maxlev)

! variables output from routine
real taufix(maxlev,maxangs)

! constants, quasi-constants, and coefficients
include "taucoef.h"
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local variables
integer 1,k
real effTdif

Susskind et al 1983 algorithm for transmittance from fixed gases
Effective mean temperature above P -> \tilde{T} in equation (A6)

taucfw: precomputed non-varying part of \tilde{T} integral
taucfc: includes term with division by (1 - \tau"o)

here effTdif -> \tilde{T} - \tilde{T} o or
difference between effective mean temperatures for the
current temperature profile and the standard temperature profile
Then:

tau = A + B (T - T o) + C ( \tilde{T} - \tilde{T} 0) (A7)

do k = 1, maxangs
effTdif = 0.
do 1l = 1,nlev
effTdif = effTdif + taucfw(l,k,chan) * tdif(1l)

taufix(1l,k) = taucfa(l,k,chan) + taucfb(l,k,chan) * tdif(1)
& + taucfc(l,k,chan) * effTdif
taufix(1l,k) = amax1( taufix(1l,k), 0.0)
taufix(1l,k) = aminil( taufix(1l,k), 1.0)
enddo
enddo

return
end
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tovsh2o_tau.f — Water vapor transmittance contribution
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! 'TOVSH20_TAU
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|
''"ROUTINE: tovsh2o_tau
'''"DESCRIPTION: Calculate contribution to transmittance by water vapor
using rapid transmittance algorithm coefficients
- reference Susskind, et al. 1983 JGR, p 8564
CALLED FROM: tovs_tau
SYSTEM ROUTINES USED: exp
SUBROUTINES CALLED: none

!''INPUT PARAMETERS:

h2ocd - real array (of length maxlev) with water vapor layer
column density ( g cm™-2)

chan - integer channel number

nlev - integer surface level (also number of levels to use)

tav - real array (of length maxlev) with temperature profile (K)

celsius - real array (of length maxlev) with (T - 273) (approx.
temperature in celsius)

! 10UTPUT PARAMETERS:
tauh20 - real array of effective h2o transmittance

! 'TREVISION HISTORY:
06sep95 Meta S. original routine derived from subroutine h2otau
in GLA retrieval code
17may96 Meta S. moved pressure calculations to main routine,
rewrote continuum expression
sk sk sk o o s ok sk sk sk s o s o ok sk sk sk sk o o o sk s o s ok sk o s o ok sk sk sk sk o ok sk sk sk sk ok sk sk sk sk ok sk sk sk sk ke sk sk sk sk o o sk

[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
' e - real array (of length maxlev) of H20 vapor pressure (atm)
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
!
!
subroutine tovsh2o_tau( h2ocd, e, chan, nlev, tav,

& celsius, tauh2o0)

implicit none
include "tovsparam.h"

]

! variables passed into routine
real h2ocd(maxlev)
real e(maxlev)
integer chan
integer nlev
real tav(maxlev)
real celsius(maxlev)
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variable output from routine
real tauh2o(maxlev,maxangs)

constants, quasi-constants, and coefficients
include "taucoef.h"
include "chacons.h"

include "grdcons.h"

local variables

real cont (maxlev)
real effh2o(maxlev)
integer 1, k

real taulog

statement function definitions

real quikexp
real X

quikexp(X) = 1.0 + X * (1.0 + X * ( .5 + X * .16666667 ) )

for IR channel, calculate continuum (except for angle contribution)
see Susskind and Searl (1978) J. Quant. Spect. Radiat. Transfer

kH20(\nu,i) = \sum_1l k2(\nu,T) (1) U(1)
U(1l) (as above) --> h2o0cd = delprs * h2omid

degchn = (- dK/dT) for channel; k2(T) = k2(contmp)*(1-degchn) (T-contmp)

if (irchan(chan)) then

do 1l = 1,nlev
cont(l) = e(l) * abscof(chan) * h2ocd(l) =*
& (1.0 - degchn(chan) * (tav(l) - contmp(chan)))
enddo

else
do 1l = 1,nlev
cont(l) = 0.0
enddo
endif

if ( taucfm(chan) .1t. 0.99) then
do 1l = 1,nlev
effh20(1l) = h20cd(l) ** taucfm(chan)
enddo
else
do 1l = 1,nlev
effh20(1) = h2o0cd(1)
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enddo
endif

From (A5) in Susskind, et al. 1983 (page 8564)

tau(H20) = exp ( - ( D (1 - E (T - 273)) h2ocd**M)
{ * exp(-sec \theta * KcontinuumH20) of course }

see also ON-9608, eq32

From GLA retrieval code:
TAULOG(II,K) = (-1.0 - TAUCFE(K,YCHA) * TMPXCES(II))
* TAUCFD(LEVL,K,YCHA) * EFFH20(II)

so perhaps TAUCFE = -E

do k = 1, numangs
do 1l = 1,nlev
taulog = ( -1.0 - taucfe(k,chan) * celsius(l))
& * taucfd(l,k,chan) * effh20(1)
taulog = taulog - secang(k) * cont(l)
taulog = aminl(taulog, 0.0)
tauh20(1l,k) = quikexp( taulog )
enddo
enddo

return
end
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tovsozo_tau.f — Ozone transmittance contribution

1ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok sk sk ok ok ok ok sk sk ok ok ok ok sk sk ok ok ok ok ok ok ok ok ok ke sk ok ok ok ok ok ok ok ok ok ok ok ok ok skok k

1 TOVSOZO_TAU
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]

'''ROUTINE: tovsozo_tau

''DESCRIPTION: Calculate contribution to transmittance by ozone
using rapid transmittance algorithm coefficients
- reference Susskind, et al. 1983 JGR, p 8564

CALLED FROM: tovs_tau

SYSTEM ROUTINES USED: exp

SUBROUTINES CALLED: none

!''INPUT PARAMETERS:

ozomid - real array (of length mlev) with ozone column
densities (g/cm**2)

chan - integer channel number

nlev - integer number of levels (top to surface)

celsius - real array (of length mlev) with profile of (T-273) (K)

! 10UTPUT PARAMETERS:
tauozo - real array (of size maxlev by maxangs) of effective ozone
transmittance

''REVISION HISTORY:
06sep95 Meta S. original routine derived from subroutine ozotau

in GLA retrieval code

0 sk sk ok sk sk sk s o s o ok sk sk sk sk o s o ok ok sk sk sk s s ok sk sk sk s o s sk sk sk s o s o ki sk o s o ok sk s o s ok ok sk o s ok sk sk sk sk ok sk sk sk sk ok ok
subroutine tovsozo_tau(ozomid, chan, nlev, celsius, tauozo)
implicit none
include "tovsparam.h"

! variables passed into routine

real ozomid(maxlev)

integer chan

integer nlev

real celsius(maxlev)

! variable output from routine
real tauozo(maxlev,maxangs)

! constants, quasi-constants, and coefficients

include "taucoef.h"
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local storage

real eff03(maxlev)
integer 1, k
real taulog

statement function definitions
real quikexp
real X

quikeXp(X) =1.0+X* (1.0+ X * ( .5+ X *x .16666667 ) )
calculate ’eff03’ as (ozone conc.) ** taucflN
following is formula used in GLA code:

if (taucfn(chan) .1t. 0.99) then
do 1l = 1,nlev

eff03(1) = taucfn(chan) * alog( ozomid(l))
eff03(1) = exp( eff03 )
enddo

else
do 1l = 1,nlev
eff03(1) = ozomid(l)
enddo
endif

do 1 =1, nlev
eff03(1) = ozomid(l) ** taucfn(chan)
enddo

From (A5) in Susskind, et al. 1983 (page 8564)

tau(ozone) = exp ( = ( F (1 - G (T - 273)) ozomid#**N)
see also ON-9608 eq 33

from GLA retrieval code:
TAULOG(II,K) = (-1.0 - TAUCFG(K,YCHA) * TMPXCES(II))
* TAUCFF(LEVL,K,YCHA) * EFFO3(II)* TAUCFF(LEVL,K,YCHA) * EFF03(II)

so sign of TAUCFG = -G , perhaps...

do k = 1,numangs
dol =1, nlev
taulog = ( -1.0 - taucfg(k,chan) * celsius(l))
& * taucff(l,k,chan) * eff03(1)
taulog = aminl (taulog, 0.0)
tauozo(l,k) = quikexp( taulog )
enddo
enddo

return
end
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tovs_tau.f — Driver for transmittance calculation
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1 TOVS_TAU
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tair -
tmptop -
h2omid -

ozomid -

ps -
nchan -
chanarr -

nlev -
mw_zen -
ir_zen -
dayflag -

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
!
!
|
|
|
|
|
|
|
|
! secsun -
|

|

|

|

|

|

|

|

|

|

|

|

|

|

!''DESCRIPTION:

VIROUTINE: tovs_tau

Calculate transmittance for given channel numbers
for a specified temperature, moisture, and ozone profile

Based on GLA TOVS retrieval code (comtau and
related subroutines)

SYSTEM ROUTINES USED: abs, cos

SUBROUTINES CALLED:

tovsfix_tau - transmittance contribution due to fixed gases
tovsh2o_tau - transmittance contribution due to H20

tovsozo_tau - transmittance contribution due to ozone

tovs_tauang - interpolate layer transmittance to satellite zenith

angle and take products over layers

!''INPUT PARAMETERS:

real array (of length maxlev) with temperature profile (K)

real temperature (K) at "top of atmosphere"

real array (of length maxlev) with water vapor layer specific

humidities (KG/KG)

real array (of length maxlev) with ozone column densities
(g/cm**2)

real surface pressure (mb)

integer number of channels to calculate

integer array (of length maxcha) of channels to calculate
1-20 -> HIRS2 ch 1-20; 21-24 -> MSU 1-4

integer surface level (also number of levels to use)

real satellite zenith angle for microwave channels

real satellite zenith angle for infrared channels

logical true if day ( sun angle < SUNSET = 85.0EO0)

real 1. / cos( sun angle)

!''OUTPUT PARAMETERS:

tau - real array (of size maxlev by maxcha) of transmittance along

path to satellite.

tausun - real array (of size maxcha) of transmittance along path from

sun

errflag - logical returns .true. if error

''REVISION HISTORY:
11sep95 Meta S. original routine derived from subroutine comtau

in GLA retrieval code

040ct95 Meta S. clarify arrangement of channels in tau, tausun
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04dec95 Meta S. update prologue, add comments describing local
variables
17may96 Meta S. moved calculation of column H20 density and vapor
pressure from tovsh2o_tau into this routine
ke e o o o o o o o o o o o o o e o o o o o o o s o o ok ok ok ok ok ok ok ok ok ok ok sk sk sk sk sk sk sk s s s sk ok ok ok ok ok ok ok ok ok ok ok ok ok
subroutine tovs_tau(tair, tmptop, h2omid, ozomid, ps, nchan,
& chanarr, nlev, mw_zen, ir_zen, dayflag, secsun, tau, tausun,
& errflag)

implicit none

include "tovsparam.h"
|

! variables passed into routine
|

real tair(maxlev)
real tmptop

real h2omid(maxlev)
real ozomid(maxlev)
real ps

integer nchan
integer chanarr(maxcha)
integer nlev

real mw_zen
real ir_zen
logical dayflag
real secsun

! variables output from routine
real tau(maxlev, maxcha)
real tausun(maxcha)
logical errflag

! constants, quasi-constants, and coefficients

include "matcons.h"
include "grdcons.h"
include 'chacons.h"
include "phycons.h"

! local variables
integer 1,k ! counters
integer ichan
integer chan

real tav(maxlev) ! mean layer temperature

real tdif(maxlev) ! difference from rapid alg std. temp.
real celsius(maxlev) ! difference from 273

real effangmw ! microwave and

real seceffmw !

real effangir ! IR channel zenith angles and secants
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real seceffir !
real effang !
real seceff !

real h2ocd (maxlev) ! H20 column density
real e(maxlev) ! H20 vapor pressure

effective mean layer transmittance from fixed gas contribution
real taufix(maxlev,maxangs)

effective mean layer transmittance from water vaper contribution
real tauh2o(maxlev,maxangs)

effective mean layer transmittance from ozone contribution
real tauozo(maxlev,maxangs)

effective mean layer transmittances at rapid algorithm angles
real tauang(maxlev,maxangs)

calculated transmittance along path for satellite zenith angle
and sun angle

real ctau(maxlev), ctausun

errflag = .false.

calculate quantities which are common for all channels
tav - mean layer temperature for RT calculation
tdif - difference from rapid algorithm’s std. atmos. mean temp.
celsius - difference from 273 K

(note this is not Celsius; 273 K is used in rapid algorithm)

tav(1l) = 0.5 * ( tmptop + tair(1))
tdif (1) = tav(1l) - tstd_av(l)
celsius(1) = tav(1l) - 273.
do 1 = 2,nlev
tav(l) = (tair(l-1)+tair(l)) * 0.5
tdif (1) = tav(l) - tstd_av(l)
celsius(l) = tav(l) - 273.
enddo

compute mid-level h2o0 column densities (g/cm**2)

delprs

delprs * h2omid(spec. humid) --> column density effh2o U(1)

do 1 1,nlev-1
h2omid(1l) = amax1( h2omid(l), shmin)
h20cd(l) = delprs(l) * h2omid(1)
enddo
h2ocd(nlev) = (ps - pres(nlev-1)) * gravcon * h2omid(nlev)
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e(1)

H20 partial pressure (in atm)
= (airmol/h2omol) * P(1) / (1013.25 mb per atm)
* h2omid (spec. humidity)

econ = airmol / (h2omol * atmosph) ! set in phycons.h
do 1 = 1,nlev-1
e(1l) = presa(l) * econ * h2omid(1l)
enddo
e(nlev) = (ps + pres(nlev-1)) * 0.5 * econ * h2omid(nlev)

zenith angle factors for microwave and IR channels

effangmw = abs( deg2rad * mw_zen )

seceffmw = 1. / cos( effangmw ) ! secant of MW zenith angle
effangir = abs( deg2rad * ir_zen )
seceffir = 1. / cos( effangir ) ! secant of IR zenith angle

loop over requested angles

do ichan = 1,nchan ! begin channel loop
chan = chanarr(ichan)
if (chan .gt. maxcha) then
print *,’ tovs_tau: bad channel requested’
errflag = .true.
return
else

set appropriate zenith angle (effang) and secant for IR or MW channel

if (irchan(chan)) then
effang = effangir
seceff = seceffir

else if (mwchan(chan)) then
effang = effangmw
seceff = seceffmw

endif

calculate contribution to transmittance from fixed gases
call tovsfix_tau(tdif, chan, nlev, taufix)

calculate contribution to transmittance from water vapor
call tovsh2o_tau( h2ocd, e, chan, nlev, tav,
& celsius, tauh2o0)

calculate contribution to transmittance from ozone
call tovsozo_tau( ozomid, chan, nlev, celsius, tauozo)

mean layer tramsmittance is product of contributions from fixed gases,
H20 and 03; calculate for angles used in rapid algorithm
do k = 1,maxangs
do 1 = 1,nlev
tauang(l,k) = taufix(l,k)*tauh20(l,k)*tauozo(l,k)
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enddo
enddo

interpolate transmittance from rapid algorthim angles to observed
zenith angle and to solar zenith angle
call tovs_tauang(tauang, chan, nlev, effang, seceff,
& dayflag, secsun, ctau, ctausun)

fill arrays with calculated tau and tausun
do 1 = 1,nlev
tau(l,chan) = ctau(l)
enddo

tausun(chan) = ctausun

endif
enddo ! end of channel loop

return
end
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tovs_tauang.f — Interpolate transmittance to zenith angle
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[}

''"ROUTINE: tovs_tauang

''DESCRIPTION: Interpolate computed transmittances to satellite
zenith angle

CALLED FROM: tovs_tau
SYSTEM ROUTINES USED: exp, cos, acos
SUBROUTINES CALLED: none

:!INPUT PARAMETERS:

tauang - real matrix (of size maxlev by maxangs) of mean layer
transmittance calculated for different zenith angles

chan - integer channel number

nlev - integer surface level (also number of levels to use)
effang - real abs(zenith angle) in radians

dayflag - logical flag day = .true. night = .false.

secsun - real secant of solar angle for this observation

!''OUTPUT PARAMETERS:

tau - real array of mean layer transmittance
for satellite zenith angle
tausun - real mean layer transmittance

for solar radiation

'1'REVISION HISTORY:
08sep95 Meta S. original routine derived from subroutine tauang
and tscatt in GLA retrieval code
1dec95 Meta S. set tausun = 0 to cover when sun term not used
(avoid uninitialized variable)

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
! seceff - real 1. / cos(effang)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
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subroutine tovs_tauang(tauang, chan, nlev, effang, seceff,dayflag,
& secsun, tau, tausun)

implicit none
include "tovsparam.h"
! variables passed into routine
real tauang(maxlev,maxangs)
integer chan

integer nlev
real effang
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real
logical
real

seceff
dayflag
secsun

variables output from routine

real
real

constants,
(in common

include
include
include

tau(maxlev)
tausun

quasi-constants, and coefficients

block or passed into

"taucoef .h"
"grdcons.h"
""chacons.h"

routine)

local variables

real anglsun

logical dosun

real efcos

real efsun

integer k, 1, nfang, nfsun, nangml
real sat_factor

real sfactor

real sun_factor

real tauscat

statement functions
real quikexp
real X
quikexp(X) = 1.0 + X * (1.0 + X * (

.5 + X * .16666667 ) )

set up some variables

nangml = numangs - 1
dosun = ( freqg(chan) .gt. 2000. ) .and. dayflag
tausun = 0. ! set this in case of .not.irchan or .not.dosun

find which angles of rapid algorithm bracket the observed zenith angle
(nfang and nfang+1l) and calculate factor (sat_factor) for interpolation
in sec(zenith angle)

nfang = 1
do k = 2,nangml

if (effang .gt. angle(k) ) nfang = k
enddo

sat_factor = ( seceff - secang(nfang) ) /
& (secang(nfang+1l) - secang(nfang) )
calculate transmittance as product of transmittance through layers above

and transmittance in current layer (interpolated to sat. zenith angle)

tau(l) = amax1( 0.0, (tauang(l, nfang)
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& + sat_factor * (tauang(l,nfang+l)-tauang(l,nfang)) ) )

do 1 = 2,nlev
tau(l) = tau(l-1) *
& amax1( 0.0, (tauang(l, nfang)
& + sat_factor * (tauang(l,nfang+1l)-tauang(l,nfang))))
enddo

if (irchan(chan)) then

! for IR channels, include factor for scattering (from GLA routine tscatt)
do 1l = 1,nlev
sfactor = chscatt(chan) * scat(l)
tauscat = quikexp( -sfactor * seceff )
tau(l) = tau(l) * tauscat
enddo

if (dosun) then
! if solar contribution needed, calculate effective transmittance for sun

! find which angles of rapid algorithm bracket the effective sun angle
! (nfsun and nfsun+1l) and calculate factor (sun_factor) for interpolation
! in sec(sun angle)

anglsun = seceff + secsun
efcos = 1. / anglsun
efsun = acos( efcos )

nfsun = 1
do k = 2, nangml

if ( efsun .gt. angle(k) ) nfsun = k
enddo

sun_factor = ( anglsun - secang(nfsun) ) /
& (secang(nfsun+1l) - secang(nfsun) )

! calculate product of transmittance in layers along solar path
tausun = amax1( 0.0, (tauang(l,nfsun)
& + sun_factor * (tauang(i,nfsun+l) - tauang(l,nfsun)) ))

do 1 = 2,nlev
tausun = tausun *
& amax1( 0.0, (tauang(l, nfsun)
& + sun_factor * (tauang(l,nfsun+l)-tauang(l,nfsun))))
enddo
sfactor = chscatt(chan) #* scat(nlev)
tauscat = quikexp( -sfactor * anglsun )
tausun = tausun * tauscat 11 check this...
endif

endif

return
end
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B Jacobian modules prologues and source code

dplanck.f — Calculate derivative of Planck function
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! 'DPLANCK
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[}

''"ROUTINE: dPLANCK
]

'''DESCRIPTION: derivative of PLANCK FUNCTION wrt. temperature

CALLED FROM: dTb_dTQU

]
]
]
! SYSTEM ROUTINES USED: none
]
! SUBROUTINES CALLED: none

]

!INPUT PARAMETERS:
temp real Temperature (K)
PLANK1 real WAVE NUMBER DEPENDENT CONSTANT
PLANK1 = 2 * VELLIGHT**2 * PLANCKCON / LAMDA**3
PLANK1 = 1.193E-12/LAMDA**3 WATTS / (CM#%2 - SR)
WHERE
VELLIGHT

|

|

|

|

|

!

! 3.00E+10 CM/SEC

! PLANKCON = 6.63E-34 JOULES-SEC

! LAMDA = WAVE LENGTH IN CM

! PLANK2 real WAVE NUMBER DEPENDENT CONSTANT

! PLANK2 = PLANCKCON*VELLIGHT / (BOLTZMAN*LAMDA)
! PLANK2 = 1.441/LAMDA  DEG.K

! WHERE

! BOLTZMAN = 1.38E-23 JOULE / DEG.K

! 10UTPUT PARAMETERS:

! PLANCK real blackbody radiance for given temperature
! UNITS WATTS/(CM**2-SR)

|
|
|
|
|

'REVISION HISTORY:
27nov1995 Meta S. original routine
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real FUNCTION dPLANCK(temp,PLANCK1,PLANCK2)
implicit none
|
! STATEMENT FUNCTION FOR PLANCK FUNCTION
|
real temp
real planckl
real planck2

real di ! temporary variable
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d1 = EXP(PLANCK2/temp)
dPLANCK = PLANCK1 / (d1-1.)**2 * d1 # planck2 / (temp*temp)

RETURN
END
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dTb_dTQU.f — Calculate brightness temperature Jacobian
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!DTB_ATQU
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! 'ROUTINE:

CALLED FROM:

dTb_dTQU

!''DESCRIPTION:

Calculate Jacobian or derivative of brightness
temperature with respect to input temperature,
water vapor and ozone profiles

dTb/dT, dTb/dq and dTb/du

Based on GLA TOVS retrieval code (vecrad and

related subroutines)

tovs_tauk

SYSTEM ROUTINES USED: cos

SUBROUTINES CALLED: planck,dplanck

tau
tausun
chan
tair

ir_zen
emissmw
land
nlev

rho
secsun
dosun
tground
tsurfair
dttau

!''INPUT PARAMETERS:

- real array (of size maxlev) of transmittance

real

transmittance along solar path to Earth’s surface

integer channel index for current calculation

real

array (of length maxlev) with profile of 71-level
y g p

temperatures (K)

real
real

satellite zenith angle for infrared channels (degrees)
microwave emissivity

logical flag (.true. if land, .false. if water)

real
real
real

number of levels to use in profiles
bidirectional reflectance
secant of solar angle for this observation

logical flag .true. if solar calculations needed

real
real
real

packed matrix:

dqtau

dutau

dtsun
dgqsun

dusun

real

real

real

skin (ground) temperature (K)
surface air temperature (K)
array (of size maxpack) of derivatives of
tau with respect to changes in temperature at given layers
first dimension: temperature layer (see below)
second dimension: transmittance layer
array (of size maxlev) of derivatives of
tau with respect to changes in moisture at given layers
-these apply to taus at all layers below the given layer
array (of size maxlev) of derivatives of
tau with respect to changes in ozone at given layers
-these apply to taus at all layers below the given layer
array (of size maxlev) of derivatives of

suntau with respect to changes in temperature at given layers

real

array (of size maxlev) of derivatives of

suntau with respect to changes in moisture at given layers

real

array (of size maxlev) of derivatives of

suntau with respect to changes in ozone at given layers
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'0UTPUT PARAMETERS:

bt - real brightness temp for channel chan calculated from profile

dTb_dT - real array (of size maxlev) of d(Tb)/dT

dTb_dq - real array (of size maxlev) of derivative of brightness
temperature with respect to moisture at given layers

dTb_du - real array (of size maxlev) of derivative of brightness

temperature with respect to ozone at given layers

'REVISION HISTORY:
20Dec95 Meta S. original routine from combining dTb/dT(simple) and
dTb/dq2 modules
02jan96 Meta S. change to calculate values for 1 channel, call
from tovs_tauK routine

06Jan96 Meta S. modify to use tau-level dependent derivatives for
temperature (dttau), to include C term in
fixed gas temperature derivative.

12Jan96 Meta S. edited prologue

29mar96 Meta S. minor optimization - change dttau to packed array
format

Matrix Packing (based on SPPTRF manual page)
The j-th column of A is stored in the array AP as follows:
AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j

Two-dimensional storage of the matrix A:
all al2 al3 ail4 1st dimension: affecting temperature layer
0 a22 a23 a24 2nd dimension: affected transmittance layer

0 0 a33 a34
0 0 0 a44 al2: influence of T(1) on \hat(\tau)(2)

| zeros because temperatures in a given layer don’t affect
transmittance layers above that layer

Packed storage of the upper triangle of A:
AP = [ all, al2, a22, al3, a23, a33, al4d, a24, a34, add ]
sk fe koo ok o o ook stk ok o o o ke ok sk sk sk s o o sk sk sk s o sk sk sk s o o koo o ook oo s ok stk s ok skskeokok ook skokok o ok

subroutine dTb_dTQU(tau,tausun,chan,tair,tmptop,ir_zen,

& emissmw, land, nlev, rho, secsun, dosun, tground,
& tsurfair, dttau, dqtau, dutau, dtsun, dgsun, dusun,
& bt, dTb_dT, dTb_dq, dTb_du)

implicit none

include "tovsparam.h"

80



integer maxpack

parameter (maxpack = (maxlev*(maxlev+1))/2 )

! input variables
real tau(maxlev)
real tausun
integer chan
real tair(maxlev)
real tmptop
real ir_zen
real emissmw
real rhosec
logical land
integer nlev
real rho
real secsun
logical dosun
real tground
real tsurfair
real dttau(maxpack)
real dqtau(maxlev)
real dutau(maxlev)
real dtsun(maxlev)
real dgsun(maxlev)
real dusun(maxlev)

! output variables
real bt
real dTb_dT(maxlev)
real dTb_dq(maxlev)
real dTb_du(maxlev)

! parameters from common
include "phycons.h"
include "chacons.h"
include "matcons.h"

! function types
real planck

real dplanck

! 1local variables

real btav !
real btsurf !
real btgnd !
real calc_rad !
real dbtav !
real deltau !
real dtauinv !
real dRd_dTav(maxlev)
real dRd_dq(maxlev)
real dRd_du(maxlev)
real dTb_dTav(maxlev)

blackbody temp. of avg layer temperature
blackbody temp. of surface air temperature
blackbody temp. of ground temperature
calculated radiance
d(btav) / dT

difference of transmittance in layer
inverse transmittance difference

! d (Rdown)/ d Tavg

! d (Rdown)/ d H20

! d (Rdown)/ d ozone

! 4 (bright. T)/ d Tavg

81



real dTb_dR

real emiss
integer 1, m, n, nmil
real pconl

real pcon2

real rad_down
real rad_sun
real sunterm
real tav(maxlev)

d (bright. T)/ d (radiance)
sfc emissivity for this sounding
counters

atmos. emission downward flux
solar radiation at TOA (?)
solar contribution to calc.
mean layer temperature

radiance

! check the following to see if using double makes a difference
double precision factor, dqfactor, dufactor, dtfactor

pconl
pcon2

= planckl(chan)
planck2(chan)

! initialize arrays

do 1 = 1,maxlev
dTb_dTav(l) =
dRd_dTav(l)
dTb_dq(1)
dTb_du(l) =
dRd_dq(1)
dRd_du(l1)

enddo

nw n n
[eNeNeoNeRN

[eNeNeoNeoNeNe

tav(l) =

do 1 = 2,nlev
tav(l) =

enddo

if (irchan(chan)) then

! initialize radiance sum
deltau =
btav =

1.0 - tau(1)
planck(tav(1l),

! derivative from rad_down; work array

0.5 * ( tair(1) + tmptop)

0.5 * ( tair(l) + tair(1-1))

pconl, pcon2)

calc_rad = btav * deltau

1ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok sk sk ok ok ok ok sk sk ok ok ok ok sk sk ok ok ok ok ok ok ok ok ok ke sk ok ok ok ok ok ok ok ok ok ok ok ok ok skok k

! derivs wrt tau
dTb_dq(1)
dTb_du(1) =
dTb_dTav (1) =

! derivs wrt. planck function
dplanck(tav(l), pconl, pcon2)

dbtav =

dTb_dq(1) - btav * tau(l) * dqtau(l)
dTb_du(1) - btav * tau(l) * dutau(l)
dTb_dTav(1l) - btav * tau(l) * dttau(l)

dTb_dTav(1l) = dTb_dTav(1l) + dbtav * deltau

! integrate through atmosphere (from top down)

do 1l = 2,nlev
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n = (1-1)*1/2 ! set index for packed array
nml = (1-2)*(1-1)/2 ! for levels 1 and 1-1

btav = planck(tav(l), pconl, pcon2)
deltau = tau(l-1) - tau(l)
calc_rad = calc_rad + btav * deltau

derivative terms at 1 and for levels above 1 (which contribute to tau)

first, derivative for current layer (level) ’1°
dTb_dq(1) = dTb_dq(l) - btav * tau(l) * dqtau(l)
dTb_du(l) = dTb_du(l) - btav * tau(l) * dutau(l)
dTb_dTav(1)=dTb_dTav(l) - btav * tau(l) * dttau(l+n)

then, derivatives for layers above 1’ (which contribute to both
tau(l) and tau(l-1)) - 1loop over temperature, constituent layers
to add contribution for current layer of vertical integral

dom-=1,1-1
dTb_dq(m) = dTb_dq(m) + btav * deltau * dqtau(m)
dTb_du(m) = dTb_du(m) + btav * deltau * dutau(m)
dTb_dTav(m)=dTb_dTav(m) + btav *
( tau(l-1) * dttau(m+nmi) -
& tau(l) * dttau(m+n) )
enddo

&

then derivs wrt. planck function
dbtav = dplanck(tav(l),pconl,pcon2)
dTb_dTav(l) = dTb_dTav(l) + dbtav * deltau
enddo

prepare to calculate surface contribution

btsurf = planck(tsurfair, pconl, pcon2)

btgnd = planck(tground, pconl, pcon2)
rad_down = dfxcon(chan) * btsurf * (1. - tau(nlev))
n = (nlev-1)*nlev/2 ! index for nlev

calculate derivative of rad_down wrt. changes in t,q,u at levels above
(derivatives of tau(nlev) wrt changes in tau above)
dom = 1,nlev

dRd_dq(m) = -dfxcon(chan) * btsurf * tau(nlev)
& * dqtau(m)
dRd_du(m) = -dfxcon(chan) * btsurf * tau(nlev)
& * dutau(m)
dRd_dTav(m) = -dfxcon(chan) * btsurf * tau(nlev)
& * dttau(m+n)
enddo

if (land) then
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emiss = em_land(chan)
else

emiss = em_water(chan)
endif

else if (mwchan(chan)) then

! initialize radiance sum
btav = tav(1l)
deltau = 1.0 - tau(1)
if (tau(1) .ne. 0.0) then
dtauinv = (1. / tau(1)) - 1.
rad_down = dtauinv * btav

dRd_dTav(1) = dRd_dTav(1l) + dtauinv
endif
calc_rad = btav * deltau

! first, deriv wrt. tau
dTb_dq(1) dTb_dq(1) - btav * tau(l) * dqtau(l)
dTb_du(1) dTb_du(1) - btav * tau(l) * dutau(l)
dTb_dTav(1) = dTb_dTav(1l) - btav * tau(l) #* dttau(l)

for derivative, note that 'dqtau'", '"dutau" are
1/tau dtau/dq 1/tau dtau/du - so need to multiply by tau
(i.e. not divide by tau”2 but only by tau)
if (tau(1l) .ne. 0.0) then

dRd_dq(1) = dRd_dq(1)
& - btav * 1./tau(1l) * dqtau(l)
dRd_du(1) = dRd_du(1)
& - btav * 1./tau(1) * dutau(1)
dRd_dTav(1) = dRd_dTav(1)
& - btav * 1./tau(1) * dttau(1)
endif

! now add contribution from deriv wrt. temperature
dTb_dTav(1l) = dTb_dTav(1l) + deltau

! integrate through atmosphere (from top down)
do 1l = 2,nlev

n = (1-1)*1/2 ! set index for packed array
nml = (1-2)*(1-1)/2 ! for levels 1 and 1-1

btav = tav(l)
deltau = tau(l-1) - tau(l)
if ((tau(l) .ne. 0.0 ) .and.
& (tau(l-1) .ne. 0.0) ) +then
dtauinv = ( 1. / tau(l)) - ( 1./ tau(l-1))
rad_down = rad_down + dtauinv * btav

endif
calc_rad = calc_rad + btav * deltau
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! tau derivative terms at 1 and for levels above 1 (which contribute to tau)
0 sk sk sk ok ok o ok ok o sk ok ok ok sk o sk ok ok ok sk sk o sk ok ok ok ok sk ok sk kst ok ok ko sk ok sk ok sk ok ok ok ok ok sk ok sk ks ok ok ok skok ok
! first, tau derivative for current layer (level) ’1°
dTb_dq(1) = dTb_dq(l) - btav * tau(l) * dqtau(l)
dTb_du(l) = dTb_du(l) - btav * tau(l) * dutau(l)
dTb_dTav(l) = dTb_dTav(l) -
& btav * tau(l) * dttau(l+n)

! then, tau derivatives for layers above ’1’ (which contribute to both
! tau(l) and tau(l-1)) -- loop over temperature, constituent layers
! to add contribution for current layer of vertical integral

dom-=1,1-1
dTb_dq(m) = dTb_dq(m) + btav * deltau * dqtau(m)
dTb_du(m) = dTb_du(m) + btav * deltau * dutau(m)
dTb_dTav(m) = dTb_dTav(m) + btav *
( tau(l-1) * dttau(m+nmi) -
tau(l) * dttau(m+n) )
enddo

&

then, tau derivatives for rad_down terms (if applicable)
for derivative, note that 'dqtau'", '"dutau" are
1/tau dtau/dq 1/tau dtau/du - so need to multiply by tau
(i.e. not divide by tau”2 but only by tau)
if ((tau(l) .ne. 0.0 ) .and.
& (tau(1-1) .ne. 0.0) ) then

! tau derivative for current layer ’1’°
dRd_dq(1) = dRd_dq(l)

& - btav * 1./tau(l) * dqtau(l)
dRd_du(l) = dRd_du(l)

& - btav * 1./tau(l) * dutau(l)
dRd_dTav(1l) = dRd_dTav(l)

& - btav * 1./tau(l) * dttau(l+n)

0 sk sk ok sk sk sk s o s o ok sk sk sk sk o s o ok ok sk sk sk s s ok sk sk sk s o s sk sk sk s o s o ki sk o s o ok sk s o s ok ok sk o s ok sk sk sk sk ok sk sk sk sk ok ok
! then, tau derivatives for layers above ’1’... note the tau derivative terms
! in "dtauinv" are the same for each level (needn’t be recalculated)

dom=1,1-1
dRd_dq(m) = dRd_dq(m) -

& btav * dtauinv * dqtau(m)
dRd_du(m) = dRd_du(m) -
& btav * dtauinv * dutau(m)
dRd_dTav(m) = dRd_dTav(m) - btav *
& (1./tau(l) * dttau(m+n) -
& 1./tau(l-1) * dttau(m+nmi))
enddo

|
! then, contribution from temperature term to rad_down derivative

dRd_dTav(l) = dRd_dTav(l) + dtauinv
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endif

|
! finally, add contribution from temperature term to Tb derivative
dTb_dTav(l) = dTb_dTav(l) + deltau
enddo
! prepare to calculate surface contribution
btsurf = tsurfair
btgnd = tground
rad_down = (rad_down + bigbang) * tau(nlev)
emiss = emissmw

n = (nlev-1)*nlev/2 ! index for nlev

dom = 1,nlev

dRd_dq(m) = dRd_dq(m) * tau(nlev) +
& rad_down * dqtau(m)
dRd_du(m) = dRd_du(m) * tau(nlev) +
& rad_down * dutau(m)
dRd_dTav(m) = dRd_dTav(m) * tau(nlev) +
& rad_down * dttau(m+n)
enddo

endif

if (use_refl(chan)) then

factor =
& (cos(ir_zenxdeg2rad)*calc_rad*(1.-emiss)*(dfxcon(chan)*2.0)
& + emiss * btgnd)

calc_rad = calc_rad + tau(nlev) * factor
n = (nlev-1)*nlev/2 ! index for nlev

dom = 1,nlev
dgfactor = (cos(ir_zenx*deg2rad)*dTb_dq(m) *

& (1.-emiss) * (dfxcon(chan)*2.0) )
dTb_dq(m) = dTb_dq(m) +

& tau(nlev) * dqtau(m) * factor +

& tau(nlev) * dgqfactor
dufactor = (cos(ir_zenx*deg2rad)*dTb_du(m) *

& (1.-emiss) * (dfxcon(chan)*2.0) )
dTb_du(m) = dTb_du(m) +

& tau(nlev) #* dutau(m) * factor +

& tau(nlev) #* dufactor

dtfactor = (cos(ir_zen*deg2rad)*dTb_dTav(m) *
& (1.-emiss) * (dfxcon(chan)*2.0) )
dTb_dTav(m) = dTb_dTav(m) +
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& tau(nlev) * dttau(m+n) * factor +

& tau(nlev) * dtfactor
enddo
else
calc_rad = calc_rad + tau(nlev) *
& (rad_down + emiss * ( btgnd - rad_down ))
n = (nlev-1)*nlev/2 ! index for nlev

factor = (rad_down + emiss * ( btgnd - rad_down ))

dom = 1,nlev
dTb_dq(m) = dTb_dq(m) +

& tau(nlev) * dqtau(m) * factor +

& tau(nlev) * (1.-emiss) * dRd_dq(m)
dTb_du(m) = dTb_du(m) +

& tau(nlev) * dutau(m) * factor +

& tau(nlev) * (1.-emiss) * dRd_du(m)
dTb_dTav(m) = dTb_dTav(m) +

& tau(nlev) * dttau(m+n) * factor +

& tau(nlev) * (1.-emiss) * dRd_dTav(m)

enddo
endif

! Add solar contribution for wavenumber greater than 2000.0

if (dosun) then
rhosec = rho / secsun
rad_sun = scon * planck(tsun, pconl, pcon2)
sunterm = rhosec * rad_sun * tausun

calc_rad = calc_rad + sunterm

dom = 1,nlev
dTb_dq(m) = dTb_dq(m) + rhosec * rad_sun * dqsun(m)
dTb_du(m) = dTb_du(m) + rhosec * rad_sun * dusun(m)
dTb_dTav(m) = dTb_dTav(m) + rhosec * rad_sun * dtsun(m)
enddo

endif
! now calculate brightness temperature & derivative

if (irchan(chan)) then
call brtemp(calc_rad, pconl, pcon2, bt)
dTb_dR = 1.0 / dplanck(bt,pconl,pcon2)
dom=1, nlev
dTb_dq(m) = dTb_dq(m) * dTb_dR
dTb_du(m) = dTb_du(m) * dTb_dR
dTb_dTav(m) = dTb_dTav(m) * dTb_dR
enddo
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else if (mwchan(chan)) then
! no dTb/dR factor for microwave channels
bt = calc_rad
endif
! now, calculate dTb/dT = dTb_dTav * dTav/dT
do 1 = 1,nlev-1
dTb_dt(1) = 0.5 * ( dTb_dTav(l) + dTb_dTav(1l+1))
enddo

dTb_dt(nlev) = 0.5 * dTb_dTav(nlev)

return
end
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tovsfix_tauK.f — Fixed gas transmittance contribution
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' ' TOVSFIX_TAUK
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!

VIROUTINE: tovsfix_tauk

''DESCRIPTION: Calculate contribution to transmittance by fixed gases
using rapid transmittance algorithm coefficients
- reference Susskind, et al. 1983 JGR, p 8565
and derivative of fixed contrib w.r.t. mean layer temperature

CALLED FROM: tovs_tauk
SYSTEM ROUTINES USED: none
SUBROUTINES CALLED: none

! 'INPUT PARAMETERS:
tdif - real array (of length nlev) with difference between
current best estimate of layer mean temperatures and
standard atmosphere layer mean temperatures (K)
chan - integer channel number
nlev - integer surface level (also number of levels to use)

|

|

|

|

|

|

|

|

|

|
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|

|

|

|

|

1

! 10UTPUT PARAMETERS:

! taufix - real array of effective mean layer transmittance

! for fixed gases

! dttaufix - real array (of size maxpack by maxangs) of

! derivative of taufix with respect to temperature

! ( 1/taufix d(taufix)/d4T)

! packed matrix: first dimension: temperature layer (see below)
! second dimension: transmittance layer

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

! 'TREVISION HISTORY:

17jan96 Meta S. original routine derived from module tovsfix_tau
in GLA retrieval code - move derivative code into
this routine, and vertical sum from tovs_tauprodK
back into tovs_tauangK

16feb96 Meta S. minor optimization: swap dimensions of dttaufix

29mar96 Meta S. another minor optimization: change dttaufix
into packed array ((maxlev*(maxlev+1))/2,maxangs)

18may96 Meta S. effTdif need not be saved as fct. of angle

! Matrix Packing (based on SPPTRF manual page)
The j-th column of A is stored in the array AP as follows:
AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j

Two-dimensional storage of the matrix A:

all al2 al3 ail4 1st dimension: affecting temperature layer
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(@]

a22 a23 a24 2nd dimension: affected transmittance layer
0 0 a33 a34
0 0 0 a44 al2: influence of T(1) on \hat(\tau)(2)

| zeros because temperatures in a given layer don’t affect
transmittance layers above that layer

Packed storage of the upper triangle of A:
AP = [ all, al2, a22, al3, a23, a33, al4d, a24, a34, add ]
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subroutine tovsfix_tauK(tdif, chan, nlev, taufix, dttaufix)

implicit none
include "tovsparam.h"

integer maxpack
parameter (maxpack = (maxlev*(maxlev+1))/2 )

! variables passed into routine

integer nlev, chan
real tdif(maxlev)

! variables output from routine
real taufix(maxlev,maxangs)
real dttaufix(maxpack,maxangs)

! constants, quasi-constants, and coefficients
include "taucoef.h"

! 1local variables
integer k,1,m,n

! difference of effective mean temperature above given level
! from rapid algorithm standard temperature value

real effTdif

real cltau

Susskind et al 1983 algorithm for transmittance from fixed gases
Effective mean temperature above P -> \tilde{T} in equation (A6)

taucfw: precomputed non-varying part of \tilde{T} integral
taucfc: includes term with division by (1 - \tau"o)

here effTdif -> \tilde{T} - \tilde{T} o or
difference between effective mean temperatures for the
current temperature profile and the standard temperature profile
Then:
tau = A + B (T - T70) + C ( \tilde{T} - \tilde{T} o) (A7)
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do k = 1, maxangs
effTdif = 0.
do 1l = 1,nlev

n = (1-1)*1/2 ! set index for packed array
effTdif = effTdif + taucfw(l,k,chan) * tdif(1l)

taufix(1l,k) = taucfa(l,k,chan) + taucfb(l,k,chan) * tdif(1)
& + taucfc(l,k,chan) * effTdif

! layer transmittance bounded between O and 1
taufix(1l,k) = amax1( taufix(1l,k), 0.0)
taufix(1l,k) aminil( taufix(1l,k), 1.0)

! if taufix is zero, then set temperature derivative also to zero

if (taufix(1l,k) .eq. 0.0) then

dom=1,1
dttaufix(m+n,k) = 0.0
enddo
else

effTdif is weighted sum of temperatures over all layers above
current layer - so need to loop over those layers to fill in
their contribution to this layer’s effective transmittance

cltau = taucfc(l,k,chan) / taufix(1l,k)

dom=1,1
dttaufix(m+n,k) = cltau * taucfw(m,k,chan)
enddo

! temperature contribution in ’taucfb’ term is only for transmittance
! in the same layer
dttaufix(l+n,k) = dttaufix(l+n,k) +
& (taucfb(l,k,chan) / taufix(1l,k))

endif

enddo
do 1 = nlev+l,maxlev

n = (1-1)*1/2 ! set index for packed array
taufix(1l,k) = 0.0
! dom-=1,1
! dttaufix(m+n,k) = 0.0
do m = n+l,n+l
dttaufix(m,k) = 0.0
enddo
enddo
enddo

return
end
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tovsh2o_tauK.f — Water vapor transmittance contribution
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!'TOVSH20_TAUK
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VIROUTINE: tovsh2o_taukK

'''"DESCRIPTION: Calculate contribution to transmittance by water vapor

using rapid transmittance algorithm coefficients
and derivatives with respect to H20 and temperature
- reference Susskind, et al. 1983 JGR, p 8564
CALLED FROM: tovs_taukK
SYSTEM ROUTINES USED: exp

SUBROUTINES CALLED: none

!''INPUT PARAMETERS:

h2ocd - real array (of length maxlev) with water vapor layer
column densities (g cm™-2)
e real array (of length maxlev) of H20 vapor pressure (atm)
dgh2ocd - real array (of length maxlev) of derivative of H20
column density with respect to specific humidity

dqe - real array (of length maxlev) of derivative of H20
vapor pressure with respect to specific humidity

chan - integer channel number

nlev - integer surface level (also number of levels to use)

tav - real array (of length maxlev) with temperature profile (K)

celsius - real array (of length maxlev) with (T - 273) (approx.
temperature in celsius)

!''OUTPUT PARAMETERS:

tauh20 - real array (of size maxlev by maxangs) of effective h2o
transmittance

dgqtauh2o - real array (of size maxlev by maxangs) of logarithmic
derivative of tauh2o with respect to H20 specific humidity

dttauh2o - real array (of size maxlev by maxangs) of logarithmic
derivative of tauh2o0 with respect to temperature

'"REVISION HISTORY:

30nov95 Meta S. original routine derived from module tovsh2o_tau
07dec95 Meta S. added loop to fill in zeros below sfc level for
derivative
19dec95 Meta S. add ’factor’ in calculation of ’cont’, ’dqcont’
(fix bug where ’cont’ was reset before being used
in calculation of ’dqcont’)
20Dec95 Meta S. this version calculates temperature derivative
wrt ’tav’ (simplifies coding)
15Mar96 Meta S. amplified comments - tiny fix with ’dtcont’
18may96 Meta S. revisions to move column density and vapor pressure
calculations up to tovs_tauk
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! 20Jul96 Meta S. corrected description of output parameters
|
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subroutine tovsh2o_tauK( h2ocd, e, dgh2o0cd, dqe, chan, nlev,
& tav, celsius, tauh2o0, dqtauh2o, dttauh2o)

implicit none

include "tovsparam.h"

! variables passed into routine

real h2ocd(maxlev)
real e(maxlev)

real dgh2ocd (maxlev)
real dge(maxlev)

integer chan

integer nlev

real tav(maxlev)
real celsius(maxlev)

! variable output from routine

real tauh2o(maxlev,maxangs)
real dgtauh2o(maxlev,maxangs)
real dttauh2o(maxlev,maxangs)

! constants, quasi-constants, and coefficients
include "taucoef.h"
include "chacons.h"

include "grdcons.h"

! local storage

real cont (maxlev)
real deffh2o(maxlev)
real dqcont (maxlev)
real dtcont (maxlev)
real dgtaulog

real dttaulog

real effh2o(maxlev)
integer k, 1

real taulog

! statement function definitions

real quikexp
real X

quikexp(X) = 1.0 + X * (1.0 + X * ( .5 + X * .16666667 ) )

! for IR channel, calculate continuum (except for angle contribution)
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and derivatives with respect to specific humidity and temperature
see Susskind and Searl (1978) J. Quant. Spect. Radiat. Transfer

kH20(\nu,i) = \sum_1l k2(\nu,T) (1) U(1)

U(1l) (as above) --> h2o0cd = delprs * h2omid

degchn = - dk2/dT for channel k2(T) = k2(contmp)*(1-degchn) (T-contmp)

if (irchan(chan)) then

do 1l = 1,nlev
cont(l) = e(l) * abscof(chan) * h2ocd(l) *

& (1.0 - degchn(chan) * (tav(l) - contmp(chan)))
dtcont(l) = - e(1) * abscof(chan) * h2ocd(l) *
& degchn(chan)
dqcont(l) = abscof(chan) *
& ( e(1) * dgh20cd(1l) + h20cd(1l) * dqe(l) ) *
& (1.0 - degchn(chan) * (tav(l) - contmp(chan)))
enddo
else
do 1l = 1,nlev
cont(l) = 0.0
dqcont(l) = 0.0
dtcont(1l) = 0.0
enddo
endif

if ( taucfm(chan) .1t. 0.99) then
do 1l = 1,nlev
deffh20(1l) = taucfm(chan) * (h2ocd(l)#**(taucfm(chan)-1.))
& * dgh2o0cd(1)
effh20(1l) = h20cd(l) ** taucfm(chan)
enddo
else
do 1l = 1,nlev
effh20(1) = h2o0cd(1)
deffh20(1) = dgh2o0cd(1)
enddo
endif

From (A5) in Susskind, et al. 1983 (page 8564)

tau(H20) = exp ( - ( D (1 - E (T - 273)) h2ocd**M)
{ * exp(-sec \theta * KcontinuumH20) of course }

see also ON-9608, eq32
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From GLA retrieval code:
TAULOG(II,K) = (-1.0 - TAUCFE(K,YCHA) * TMPXCES(II))
* TAUCFD(LEVL,K,YCHA) * EFFH20(II)

so perhaps TAUCFE = -E

do k = 1, numangs
do 1l = 1,nlev
taulog = ( -1.0 - taucfe(k,chan) * celsius(l))
& * taucfd(l,k,chan) * effh20(1)
taulog = taulog - secang(k) * cont(l)
taulog = aminl(taulog, 0.0) !'<-- modified for derivative calc.

if (taulog .gt. 0.0) then

dqtauh20(1,k) =
dttauh20(1,k)
taulog = 0.0
tauh20(1l,k) = 1.0

! if taulog set to zero, derivatives

0.0
0.0 ! should be zero also

else
set derivatives w.r.t. ozone and temperature of mean layer transmittance

dgtaulog = ( -1.0 - taucfe(k,chan) * celsius(l))

& * taucfd(l,k,chan) * deffh20(l)
dgtaulog = dqtaulog - secang(k) * dqcont(l)
dttaulog = - taucfe(k,chan)

& * taucfd(l,k,chan) * effh20(1)

dttaulog = dttaulog - secang(k) * dtcont(l)
tauh20(1l,k) = quikexp( taulog )

note on derivatives: the factor exp(taulog) is not included here
since we would divide by exp(taulog)
when creating full tau derivative
we are calculating logarithmic derivative here ->
1/tauh20 d(tauh20)/dq and 1/tauh2o d(tauh2o)/dt

dgtauh20(1l,k) = dqtaulog
dttauh20(1l,k) = dttaulog
endif
enddo
do 1 = nlev+l,maxlev
dqtauh20(1,k)
dttauh20(1,k) =
tauh20(1,k) = 1.
enddo
enddo

0.0
0.0
0 ! shouldn’t be used, anyway

return
end
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tovsozo_tauK.f — Ozone transmittance contribution
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11 TOVSOZO_TAUK
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]

'''"ROUTINE: tovsozo_tauk
''DESCRIPTION: Calculate contribution to transmittance by ozone
using rapid transmittance algorithm coefficients
- reference Susskind, et al. 1983 JGR, p 8564
and derivatives with respect to ozone and temperature
CALLED FROM: tovs_taukK
SYSTEM ROUTINES USED: exp
SUBROUTINES CALLED: none

!''INPUT PARAMETERS:

ozomid - real array (of length mlev) with ozone column
densities (g/cm**2)

chan - integer channel number

nlev - integer number of levels (top to surface)

celsius - real array (of length mlev) with profile of (T-273) (K)

! 10UTPUT PARAMETERS:
tauozo - real array (of size maxlev by maxangs) of effective
ozone transmittance
dutauozo - real array (of size maxlev by maxangs) of derivative
of tauozo with respect to ozone
dttauh2o - real array (of size maxlev by maxangs) of derivative
of tauh2o with respect to temperature

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
' 'REVISION HISTORY:

! 01dec95 Meta S. original routine derived from module tovsozo_tau

! 11dec95 Meta S. bug fixes: some typos (using H20 coeffs for deriv.
! instead of 03 coeffs)

! 20Dec95 Meta S. this version calculates temperature derivative

! wrt ’tav’ (simplifies coding)

! 14Mar96 Meta S. added more comments

! 10Jul96 Meta S. corrected description of output parameters

|
|
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subroutine tovsozo_tauK(ozomid, chan, nlev, celsius, tauozo,
& dutauozo, dttauozo)

implicit none
include "tovsparam.h"

! variables passed into routine
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real ozomid(maxlev)
integer chan
integer nlev
real celsius(maxlev)

variables output from routine

real tauozo(maxlev,maxangs)
real dttauozo(maxlev,maxangs)
real dutauozo(maxlev,maxangs)

constants, quasi-constants, and coefficients
include "taucoef.h"

local storage

real deff03(maxlev)
real dttaulog

real dutaulog

real eff03(maxlev)
integer k, 1

real taulog

statement function definitions
real quikexp
real X

quikeXp(X) =1.0+X* (1.0+ X *x ( .5 +X % ,16666667 ) )
calculate ’eff03’ as (ozone conc.) ** taucflN

following is formula used in GLA code:
if (taucfn(chan) .1t. 0.99) then
do 1l = 1,nlev
eff03(1) = taucfn(chan) * alog( ozomid(l))
eff03(1) = exp( eff03 )
enddo
else
do 1l = 1,nlev
eff03(1) = ozomid(l)
enddo
endif

deff03 is derivative of eff03 with respect to ozone
do 1 =1, nlev
eff03(1) = ozomid(l) ** taucfn(chan)
deff03(1) = taucfn(chan) * (ozomid(1l)**(taucfn(chan)-1.))
enddo

From (A5) in Susskind, et al. 1983 (page 8564)

tau(ozone) = exp ( = ( F (1 - G (T - 273)) ozomid#**N)
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see also ON-9608 eq 33

from GLA retrieval code:
TAULOG(II,K) = (-1.0 - TAUCFG(K,YCHA) * TMPXCES(II))
* TAUCFF(LEVL,K,YCHA) * EFFO3(II)* TAUCFF(LEVL,K,YCHA) * EFF03(II)

so sign of TAUCFG = -G , perhaps...

do k = 1,numangs
dol =1, nlev
taulog = ( -1.0 - taucfg(k,chan) * celsius(l))
& * taucff(l,k,chan) * eff03(1)
taulog = aminl (taulog, 0.0) !'<-- modified for derivative calc.

if (taulog .gt. 0.0) then

dutauozo(l,k) = 0.0 ! if taulog set to zero, derivatives
dttauvozo(l,k) = 0.0 ! should be zero also.
taulog = 0.0
tauozo(l,k) = 1.0
else

set derivatives w.r.t. ozone and temperature of mean layer transmittance

dutaulog = ( -1.0 - taucfg(k,chan) * celsius(l))

& * taucff(l,k,chan) * deff03(1)
dttaulog = -taucfg(k,chan)
& * taucff(l,k,chan) * deff03(1)

tauozo(l,k) = quikexp( taulog )

note on derivatives: the factor exp(taulog) is not included here
since we would divide by exp(taulog)
when creating full tau derivative
we are calculating logarithmic derivative 1/tauozo d(tauozo)/dT
and 1/(tauozo) d(tauozo)/du

dutauozo(l,k)
dttauozo(l,k)
endif
enddo
do 1 = nlev+l,maxlev
dutauozo(l,k) =
dttauvozo(l,k) =
tauozo(l,k) = 1.
enddo
enddo

dutaulog
dttaulog

0.0
0.0
0 !shouldn’t be used, anyway

return
end
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tovs_tauK.f — Driver for transmittance derivative calculation
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' ITOVS_TAUK
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VIROUTINE: tovs_tauk

''DESCRIPTION: Calculate transmittance for given channel numbers
for a specified temperature, moisture, and ozone profile
and derivatives with respect to temperature, moisture
and ozone to be used in Jacobian calculation
adding in angle calculation
Based on module tovs_tau

SYSTEM ROUTINES USED: abs, cos

SUBROUTINES CALLED:

tovsfix_tauK - transmittance contrib. by fixed gases and derivative
tovsh2o_tauK - transmittance contrib. by water vapor and derivative
tovsozo_tauK - transmittance contrib. by ozone and derivative

tovs_tauprodK - take product of fixed, water vapor & ozone
contribs and derivatives

tovs_tauangK - interpolate transmittance to obs. zenith angle &
calculate consistent derivative terms
dTb_dTQU - calculate brightness temperature and Jacobian

tair - real array (of length maxlev) with temperature profile (K)

tmptop - real temperature (K) at "top of atmosphere"

h2omid - real array (of length maxlev) with water vapor layer specific
humidities (KG/KG)

ozomid - real array (of length maxlev) with ozone column densities

(g/cm**2)

ps - real surface pressure (mb)

nchan - integer number of channels to calculate

chanarr - integer array (of length maxcha) of channels to calculate

nlev - integer surface level (also number of levels to use)

mw_zen - real satellite zenith angle for microwave channels

ir_zen - real satellite zenith angle for infrared channels

dayflag - logical true if day ( sun angle > SUNSET = 85.0E0)

secsun - real 1. / cos( sun angle)

emissmw - real microwave surface emissivity

land - logical flag (.true. if land, .false. if water)

rho - real bidirectional reflectance

tground - real skin (ground) temperature (K)

tsurfair - real surface air temperature (K)

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
! 'INPUT PARAMETERS:
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
! 'OUTPUT PARAMETERS:
]
]

tau - real array (of size maxlev by maxcha) of transmittance along
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bt

dTbdT

dTbdq

dTbdu

04dec95
07dec95
15dec95

20dec95
02jan96

08jan96
29mar96

18may96

path to satellite.

sun
real array (of size maxcha) of brightness temperatures for

tausun - real array (of size maxcha) of transmittance along path from

for channels in chanarr, calculated from profile

- real array (of size maxlev by maxcha) of d(Tb)/dT

derivative of brightness temperature with respect to
temperature at given levels

- real array (of size maxlev by maxcha) of derivative

of brightness temperature with respect to specific
humidity at given layers

- real array (of size maxlev by maxcha) of derivative

Meta
Meta
Meta

Meta
Meta

Meta

Meta

Meta S.

'REVISION HISTORY:
S.
S.
S.

wn

S.

of brightness temperature with respect to ozone at
given layers
errflag - logical returns .true. if error

original routine derived from subroutine tovs_tau

carry derivatives through to tovs_taullK

replace non-interpolated tovs_taulNK with
interpolating tovs_tauangK

add changes to create temperature derivatives

fold in rest of jacobian calculation - put in call
to dTb_dTQU2

changes for C term dependence of temperature

minor optimization: 1-d packed array for temperature
derivative terms

moved calculation of column H20 density and vapor
pressure from tovsh2o_tau into this routine

3k 3k 3k %k 3k >k 3k %k 3k ok 5k 3k 3k %k ok 3k 3k 3k >k %k 2k >k %k %k 3k 3k 3k 3k %k %k 5k K %k 3k %k %k %k Kk %k %k %k 5k %k 3k %k %k 2k 5k %k %k >k %k %k Kk %k %k %k %k %k *k %k %k %k 5k %k *k %k %k *k %k *k

subroutine tovs_tauK(tair, tmptop, h2omid, ozomid, ps, nchan,

&
&
&

implicit none

chanarr, nlev, mw_zen, ir_zen, dayflag, secsun,
emissmw, land, rho, tground, tsurfair,
tau, tausun, bt, dTbdT, dTbdq, dTbdu, errflag)

include "tovsparam.h"

integer maxpack
parameter (maxpack = (maxlev*(maxlev+1))/2 )

! variables passed into routine

real tair(maxlev)
real tmptop

real h2omid(maxlev)
real ozomid(maxlev)
real ps

integer nchan

integer chanarr(maxcha)
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integer nlev

real mw_zen
real ir_zen
logical dayflag
real secsun
real emissmw
logical 1land
real rho

real tground
real tsurfair

! variables output from routine

real tau(maxlev, maxcha)
real tausun(maxcha)

real bt (maxcha)

real dTbdT (maxlev,maxcha)
real dTbdq(maxlev,maxcha)
real dTbdu(maxlev,maxcha)

logical errflag
! constants, quasi-constants, and coefficients

include "matcons.h"
include "grdcons.h"
include 'chacons.h"
include "phycons.h"

! local variables
integer 1 ! counters
integer ichan
integer chan

real tav(maxlev) ! mean layer temperature
real tdif(maxlev) ! difference from rapid alg std. temp.
real celsius(maxlev) ! difference from 273

real effangmw microwave and
real seceffmw
real effangir
real seceffir
real effang

real seceff

IR channel zenith angles and secants

real h2ocd (maxlev) ! H20 column density

real e(maxlev) ! H20 vapor pressure

real dgh2ocd(maxlev) ! deriv. of column density wrt spec.humid.
real dge(maxlev) ! deriv. of vapor press wrt spec.humid.

! effective mean layer transmittance from fixed gas contribution
! and logarithmic derivative w.r.t. temperature
real taufix(maxlev,maxangs)
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real dttaufix(maxpack,maxangs)

effective mean layer transmittance from water vapor contribution
and logarithmic derivative w.r.t. temperature, specific humidity
real tauh2o(maxlev,maxangs)
real dqtauh2o(maxlev,maxangs), dttauh2o(maxlev,maxangs)

effective mean layer transmittance from ozone contribution

and logarithmic derivative w.r.t. temperature, ozone column density
real tauozo(maxlev,maxangs)
real dutauozo(maxlev,maxangs), dttauozo(maxlev,maxangs)

effective mean layer transmittance at rapid algorithm angles and
logarithmic derivatives w.r.t temperature, specific humidity,
and ozone column density

real tauang(maxlev,maxangs)

real dttauang(maxpack,maxangs)

real dqtauang(maxlev,maxangs)

real dutauang(maxlev,maxangs)

derivatives (w.r.t. temperature, specific humidity, and ozone) of
effective mean layer transmittances along path from satellite zenith
angle and sun angle

real dttau(maxpack), dtsun(maxlev)

real dqtau(maxlev), dgsun(maxlev)

real dutau(maxlev), dusun(maxlev)

calculated tau, tausun, derivatives and brightness temperature
for current channel

real ctau(maxlev), ctausun

real cdTbdT(maxlev), cdTbdq(maxlev), cdTbdu(maxlev)

real cbt

flag for solar calculation
logical dosun

errflag = .false.

calculate quantites which are common for all channels
tav - mean layer temperature for RT calculation
tdif - difference from rapid algorithm’s std. atmos. mean temp.
celsius - difference from 273 K
(note this is not Celsius; 273 K is used in rapid algorithm)

tav(1l) = 0.5 * ( tmptop + tair(1))
tdif (1) = tav(1l) - tstd_av(l)
celsius(1) = tav(1l) - 273.
do 1 = 2,nlev
tav(l) = (tair(l-1)+tair(l)) * 0.5
tdif (1) = tav(l) - tstd_av(l)
celsius(l) = tav(l) - 273.
enddo
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compute mid-level h2o0 column densities (g/cm**2)

delprs = {\delta p } * 10 / grav --> density(air) * {\delta z}

delprs * h2omid(spec. humid) --> column density effh2o U(1)

do 1 1,nlev-1
h2omid(1l) = amax1( h2omid(l), shmin)
h20cd(l) = delprs(l) * h2omid(1)
dgh20cd (1) = delprs(1)

enddo
h2ocd(nlev) = (ps - pres(nlev-1)) * gravcon * h2omid(1)
dgh2ocd{(nlev) = (ps - pres(nlev-1)) * gravcon

e(1l) = H20 partial pressure (in atm)
= (airmol/h2omol) * P(1) / (1013.25 mb per atm)
* h2omid (spec. humidity)

econ = airmol / (h2omol * atmosph) ! set in phycons.h

do 1 1,nlev-1
e(1l) = presa(l) * econ * h2omid(1l)
dqe(l) = presa(l) * econ

enddo
e(nlev) = (ps + pres(nlev-1)) * 0.5 * econ * h2omid(nlev)
dge(nlev) = (ps + pres(nlev-1)) * 0.5 * econ

set up zenith angle factors for microwave and IR channels

effangmw = abs( deg2rad * mw_zen )
seceffmw = 1. / cos( effangmw )
effangir = abs( deg2rad * ir_zen )
seceffir = 1. / cos( effangir )

loop over requested channels

do ichan = 1,nchan
chan = chanarr(ichan)
if (chan .gt. maxcha) then
print *,’ tovs_tau: bad channel requested’
errflag = .true.
return
else

set appropriate zenith angle (effang) and secant for IR or MW channel

if (irchan(chan)) then
effang = effangir
seceff = seceffir

else if (mwchan(chan)) then
effang = effangmw
seceff = seceffmw
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endif

set flag to show whether solar radiation calculations are performed
dosun = ( freq(chan) .gt. 2000. ) .and. dayflag

Calculate logarithmic derivatives of effective mean layer transmittances
for fixed gas, water vapor and ozone contributions. The logarithmic
derivatives are used because total transmittance from top of atmosphere
to a level is the -product- of layer values of fixed gas, water vapor
and ozone layer contributions.

calculate contribution to effective layer transmittances from fixed gases
(taufix) and logarithmic derivative of taufix w.r.t.
layer temperature 1/taufix d(taufix)/dTavg : dttaufix

call tovsfix_tauK(tdif, chan, nlev, taufix, dttaufix)

calculate contribution to effective layer transmittances from water vapor
(tauh20) and logarithmic derivatives of tauh2o w.r.t.

specific humidity 1/tauh20 d(tauh20)/dq : dgtauh20 and

layer temperature 1/tauh2o0 d(tauh2o0)/dTavg : dttauh2o

call tovsh2o_tauK( h2ocd, e, dgh2ocd, dge, chan, nlev,
& tav, celsius, tauh2o0, dqtauh2o, dttauh2o)

calculate contribution to effective layer transmittances from ozone
(tauozo) and logarithmic derivative of tauozo w.r.t.
ozone column density 1/tauozo d(tauozo)/d

call tovsozo_tauK( ozomid, chan, nlev, celsius, tauozo,
& dutauozo, dttauozo)

take product of fixed, h20, and ozone contributions to get
mean layer transmittances & logarithmic derivatives for
rapid algorithm angles

call tovs_tauprodK(nlev, taufix, tauh2o, tauozo,

& dqtauh2o0, dttauh2o, dutauozo, dttauozo, dttaufix,
& tauang, dqtauang, dutauang, dttauang )

interpolate transmittance to observed zenith angle
and calculate consistent logarithmic derivative terms

call tovs_tauangK(tauang, chan, nlev, effang, seceff,

& dosun, secsun, dqtauang, dutauang, dttauang,
& ctau, ctausun, dutau, dusun, dqtau, dqsun,
& dttau, dtsun)

calculate temperature, moisture and ozone Jacobians
and brightness temperature

call dTb_dTQU(ctau,ctausun,chan,tair,tmptop,ir_zen,
& emissmw, land, nlev, rho, secsun, dosun, tground,
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& tsurfair, dttau, dqtau, dutau, dtsun, dgsun, dusun,
& cbt, cdTbdT, cdTbdq, cdTbdu)

fill arrays with calculated brightness temperature, tau and tausun
and derivatives

do 1 = 1,nlev
tau(l,chan) = ctau(l)
dTbdT(1,chan) = cdTbdT(1)
dTbdq(1l,chan) = cdTbdq(l)
dTbdu(l,chan) cdTbdu(l)

enddo

do 1 = nlev+l,maxlev
tau(l,chan) = ctau(nlev)
dTbdT(1,chan) 0.0
dTbdq(l,chan) = 0.0
dTbdu(l,chan) 0.0

enddo

tausun(chan) = ctausun

bt(chan) = cbt

endif

enddo ! end of channel loop

return
end
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tovs_tauangK.f — Interpolate transmittance to zenith angle

1 sk ok s ok sk of ke ok sk ok e ok sk ok e ok sk ok e sk ok s ook ook s ok sk ok s ok ok sk ok e ok sk ok e e ok sk s e sk ook s o sk ok s sk ok sk ok s ok sk ok ok ok sk ok ke ok ok ok ok
1 TOVS_TAUANGK

sk fe koo ok o o ook stk ok o o o ke ok sk sk sk s o o sk sk sk s o sk sk sk s o o koo o ook oo s ok stk s ok skskeokok ook skokok o ok
|
'''"ROUTINE: tovs_tauangk
''DESCRIPTION: Interpolate computed transmittances to satellite
zenith angle and combine transmittance derivatives
consistent with angle interpolation and tau calculation
CALLED FROM: tovs_taukK
SYSTEM ROUTINES USED: exp, cos, acos
SUBROUTINES CALLED: none

!''INPUT PARAMETERS:

tauang - real matrix (of size maxlev by maxangs) of mean layer
transmittance calculated for different zenith angles

chan - integer channel number

nlev - integer surface level (also number of levels to use)

effang - real abs(zenith angle) in radians

seceff - real 1. / cos(effang)

dosun - logical flag .true. if calculations for sun are to be done

secsun - real secant of solar angle for this observation

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

! dqtauang - real array (of size maxlev by maxangs) of derivative of
! tauang wrt. H20 specific humidity

! dutauang - real array (of size maxlev by maxangs) of derivative of
! tauang wrt. ozone

! dttauang - real array (of size maxpack by maxangs) of derivative of
! tauang wrt. mean layer temperature

! packed matrix: first dimension: temperature layer (see below)
! second dimension: transmittance layer

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

!''OUTPUT PARAMETERS:

tau - real array (of length maxlev) of mean layer transmittance
for satellite zenith angle

tausun - real mean layer transmittance
for solar radiation

dgtau - real array (of size maxlev) of logarithmic derivatives of

tau with respect to changes in moisture at given layers
-these apply to taus at all levels below the given layer
dutau - real array (of size maxlev) of logarithmic derivatives of
tau with respect to changes in ozone at given layers
-these apply to taus at all levels below the given layer

dttau - real array (of size maxpack) of logarithmic derivatives of
tau with respect to changes in temperature at given layers
packed matrix: first dimension: temperature layer (see below)
second dimension: transmittance layer
dgsun - real array (of size maxlev) of logarithmic derivatives of

suntau with respect to changes in moisture at given layers
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dusun

dtsun
'REVISION

15dec95

20dec95

08jan96
12jan96

17 jan96é

16feb96
29mar96

- real array (of size maxlev) of logarithmic derivatives of
suntau with respect to changes in ozone at given layers
- real array (of size maxlev) of logarithmic derivatives of
suntau with respect to changes in temperature at given layers

HISTO
Meta

Meta

Meta

Meta

Meta

Meta
Meta

Matrix Packing
The j-th column of A is stored in the array AP as follows:
AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j

RY:
S.

S.

wn

all al2 ail3
0 a22 a23
0 0 a33
0 0 0

original routine derived from subroutine tauang

(derivs. based on earlier routine w/o interpolation)

add changes to pass in temperature derivatives
consider only temperature deriv from B term
of tovsfix_tau (which would be 1/taufix *taucfb)

include ’C’ term derivative; dttaufix and dttau are
now dependent on tau level also

move derivative products to tovstau_prod.f (for
clarity, mostly), edit prologue

array notation in dttauang, dttau now consistent;
sum of temp. derivatives over transmittance layers
now back in this routine after interpolation (where
it should be!)

minor optimization: swap dimensions of dttaux

another minor optimization: change dttaufix

into packed array ((maxlev*(maxlev+1))/2,maxangs)

(based on SPPTRF manual page)

Two-dimensional storage of the matrix A:

al4 1st dimension: affecting temperature layer
a24 2nd dimension: affected transmittance layer
a34

ad4 al2: influence of T(1) on \hat(\tau)(2)

| zeros because temperatures in a given layer don’t affect

transmittance layers above that layer

Packed storage of the upper triangle of A:

AP = [ all, al2, a22, al3, a23, a33, al4d, a24, a34, add ]

3k 3k 3k %k 3k >k 3k %k 3k ok 5k 3k 3k %k ok 3k 3k 3k >k %k 2k >k %k %k 3k 3k 3k 3k %k %k 5k K %k 3k %k %k %k Kk %k %k %k 5k %k 3k %k %k 2k 5k %k %k >k %k %k Kk %k %k %k %k %k *k %k %k %k 5k %k *k %k %k *k %k *k

subroutine tovs_tauangK(tauang, chan, nlev, effang, seceff,
dosun, secsun, dqtauang, dutauang, dttauang,

tau, tausun, dutau, dusun, dqtau, dqsun,

dttau, dtsun)

&
&
&

implicit none

include "tovsparam.h"

integer maxpack
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parameter (maxpack = (maxlev*(maxlev+1))/2 )

! variables passed into routine
real tauang(maxlev,maxangs)
integer chan
integer nlev

real effang
real seceff
logical dosun
real secsun
real dgtauang(maxlev,maxangs)
real dutauang(maxlev,maxangs)
real dttauang(maxpack,maxangs)

! variables output from routine

real tau(maxlev)
real tausun

real dutau(maxlev)
real dusun(maxlev)
real dqtau(maxlev)
real dgsun(maxlev)
real dttau(maxpack)
real dtsun(maxlev)

! constants, quasi-constants, and coefficients
! (in common block or passed into routine)

include "taucoef.h"
include "grdcons.h"

include "chacons.h"

! 1local variables

real anglsun
real efcos
real efsun

integer k, 1, m, n, nml, nnml
integer nangml
integer nfang
integer nfsun

real sat_factor

real sfactor

real sun_factor

real tauscat

real tauint ! interpolated tau: \tilde{tau}(\theta)
real tauinti ! 1. / \tilde{tau}(\theta)

! statement functions
real quikexp
real X
quikexp(X) = 1.0 + X * (1.0 + X * ( .5 + X * .16666667 ) )

nangml = numangs - 1
tausun = 0. ! set this in case of .not.irchan or .not.dosun
do 1 = 1,maxlev
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dusun(l) = 0.

dgsun(1l) = 0.
dtsun(l) = 0.
enddo

find which angles of rapid algorithm bracket the observed zenith angle
and calculate factor for interpolation in sec(zenith angle)

first consider transmittance layer 1, then loop over rest of layers

nfang = 1
do k = 2,nangml

if (effang .gt. angle(k) ) nfang = k
enddo

sat_factor = ( seceff - secang(nfang) ) /
& (secang(nfang+1l) - secang(nfang) )

tau(l) = amax1( 0.0, (tauang(l, nfang)
& + sat_factor * (tauang(l,nfang+l)-tauang(l,nfang)) ) )

if ( tau(l) .eq. 0.0) then

dqtau(1) = 0.0
dutau(1) = 0.0
dttau(1) = 0.0
else
tauinti = 1. / tau(1)
dqtau(1l) = tauinti *
& ((1. - sat_factor)*dqtauang(1l,nfang)
& + sat_factorxdqtauang(l,nfang+1))
dutau(l) = tauinti *
& ((1. - sat_factor)*dutauang(1l,nfang)
& + sat_factorxdutauang(l,nfang+1))
dttau(l) = tauinti *
& ((1. - sat_factor)*dttauang(1l,nfang)
& + sat_factor xdttauang(l,nfang+1))
endif

! loop over transmittance layers

do 1 = 2,nlev
n = (1-1)*1/2 ! set index for packed array
nml = (1-2)*(1-1)/2 ! for levels 1 and 1-1

nnml = n - nml

tauint = amax1( 0.0, (tauang(l, nfang)
& + sat_factor * (tauang(l,nfang+1l)-tauang(l,nfang))))
tau(l) = tau(l-1) * tauint
|
]
! calculate factors dqtau ( 1/tau d(tau)/dq) and dutau (1/tau d(tau)/du)
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if (tauint .eq. 0.0 ) then
dqtau(l) = 0.0
dutau(l) = 0.0
dom-=1,1
dttau(m+n) = 0.0
enddo
else
tauinti = 1. / tauint
dqtau(l) = tauinti *
& ((1. - sat_factor)*dqtauang(l,nfang)
& + sat_factor *dqtauang(l,nfang+1))
dutau(l) = tauinti *
& ((1. - sat_factor)*dutauang(l,nfang)
& + sat_factor *dutauang(l,nfang+1))
! dom-=1,1-1
! dttau(m+n) = dttau(m+nml) + tauinti *
! & ((1. - sat_factor)*dttauang(m+n,nfang)
! & + sat_factor xdttauang(m+n,nfang+1))
dom = n+l,n+1-1
dttau(m) = dttau(m-nnml) + tauinti *
& ((1. - sat_factor)*dttauang(m,nfang)
& + sat_factor xdttauang(m,nfang+1))
enddo
dttau(l+n) = tauinti *
& ((1. - sat_factor)*dttauang(l+n,nfang)
& + sat_factor xdttauang(l+n,nfang+1))
endif
enddo

if (irchan(chan)) then

do 1l = 1,nlev
sfactor = chscatt(chan) * scat(l)
tauscat = quikexp( -sfactor * seceff )
tau(l) = tau(l) * tauscat

enddo

if (dosun) then

! find which angles of rapid algorithm bracket the effective sun angle
! and calculate factor for interpolation in sec(sun angle)

anglsun = seceff + secsun
efcos = 1. / anglsun
efsun = acos( efcos )

nfsun = 1
do k = 2, nangml

if ( efsun .gt. angle(k) ) nfsun = k
enddo
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sun_factor = ( anglsun - secang(nfsun) ) /
& (secang(nfsun+1l) - secang(nfsun) )

! calculate product of transmittance in layers along solar path
tausun = amax1( 0.0, (tauang(l,nfsun)

& + sun_factor * (tauang(i,nfsun+l) - tauang(l,nfsun)) ))
if (tausun .eq. 0.0) then
dgsun(1) = 0.0
dusun(1) = 0.0
dtsun(l) = 0.0
else

tauinti = 1. / tausun
dgsun(1) = tauinti *
& ((1.-sun_factor)*dqtauang(1l,nfang)
& +sun_factor *dqtauang(l,nfang+1))

dusun(1) = tauinti *
& ((1.-sun_factor)*dutauang(1,nfang)

& +sun_factor*dutauang(1l,nfang+1))

dtsun(1l) = tauinti *

& ((1.-sun_factor)*dttauang(1l,nfang)
& + sun_factorxdttauang(l,nfang+1))
endif
do 1 = 2,nlev
n = (1-1)*1/2 ! set index for packed array

tauint = amax1( 0.0, (tauang(l, nfsun)
& + sun_factor * (tauang(l,nfsun+l)-tauang(l,nfsun))))

tausun = tausun * tauint

if (tauint .eq. 0.0) then
dgsun(1l) = 0.0
dusun(l) = 0.0
dtsun(l) = 0.0

else
tauinti = 1. / tauint
dgqsun(l) = tauinti *

& ((1. - sun_factor)*dqtauang(l,nfang)

& + sun_factor *dqtauang(l,nfang+1))
dusun(l) = tauinti *

& ((1. - sun_factor)*dutauang(l,nfang)

& + sun_factor *dutauang(l,nfang+1))

dom=1,1-1

dtsun(m) = dtsun(m) + tauinti *
& ((1. - sat_factor)+*dttauang(m+n,nfang)
& + sat_factor xdttauang(m+n,nfang+1))
enddo
dtsun(l) = tauinti *
& ((1. - sat_factor)+*dttauang(l+n,nfang)
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+ sat_factor *dttauang(l+n,nfang+1))

endif
enddo
sfactor = chscatt(chan) #* scat(nlev)
tauscat = quikexp( -sfactor * anglsun )
tausun = tausun * tauscat 11 check this...
endif

endif

return
end
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tovs_tauprodK.f — Take products of transmittance derivatives

1ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok sk sk ok ok ok ok sk sk ok ok ok ok sk sk ok ok ok ok ok ok ok ok ok ke sk ok ok ok ok ok ok ok ok ok ok ok ok ok skok k

' TOVS_TAUPRODK
1 sk ok s ok sk of ke ok sk ok e ok sk ok e ok sk ok e sk ok s ook ook s ok sk ok s ok ok sk ok e ok sk ok e e ok sk s e sk ook s o sk ok s sk ok sk ok s ok sk ok ok ok sk ok ke ok ok ok ok
]

'''ROUTINE: tovs_tauprodK

'''DESCRIPTION: Calculate product of fixed, h2o and ozone contributions
to transmittances and derivatives of tau product
** with minor optimization

CALLED FROM: tovs_tauk
SYSTEM ROUTINES USED: none
SUBROUTINES CALLED: none

|

|

|

|

|

|

|

|

|

|

|

!

! ' INPUT PARAMETERS:

! nlev - integer surface level (also number of levels to use)
! taufix - real array (of size maxlev by maxangs) of effective
! mean layer transmittance for fixed gases

! real array (of size maxlev by maxangs) of effective
! mean layer transmittance for moisture

! tauozo - real array (of size maxlev by maxangs) of effective
! mean layer transmittance for ozone

! dqtauh2o - real array (of size maxlev by maxangs) of derivative
! of tauh2o with respect to H20 specific humidity
! dttauh2o - real array (of size maxlev by maxangs) of derivative
! of tauh2o with respect to temperature
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

tauh2o

dutauozo - real array (of size maxlev by maxangs) of derivative
of tauozo with respect to ozone
dttauozo - real array (of size maxlev by maxangs) of derivative
of tauozo with respect to temperature
dttaufix - real array (of size maxpack by maxangs) of
! derivative of taufix with respect to temperature
! packed matrix with first dimension: temperature layer (see below)
second dimension: transmittance layer

! 10UTPUT PARAMETERS:
tauang - real matrix (of size maxlev by maxangs) of mean layer
transmittance calculated for different zenith angles
dgtauang - real array (of size maxlev by maxangs) of derivative of
tauang wrt. H20 specific humidity
dutauang - real array (of size maxlev by maxangs) of derivative of
tauang wrt. ozone
dttauang - real array (of size maxpack by maxangs) of
! derivative of tauang wrt. mean layer temperature
! packed matrix: first dimension: temperature layer (see below)
second dimension: transmittance layer

''REVISION HISTORY:
12jan96 Meta S. original routine
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17jan96 Meta S. sum of temperature deriv over layers moved to
tovs_tauangK, *after* interpolation to zenith angle
removed TAUCFB, TAUCFC - added dttaufix input
16feb96 Meta S. minor optimization: Switched dimensions of dttaufix,
dttauang
29mar96 Meta S. another minor optimization: change dttaufix, dttauang
into packed array ((maxlev*(maxlev+1))/2,maxangs)

Matrix Packing (based on SPPTRF manual page)
The j-th column of A is stored in the array AP as follows:
AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j

Two-dimensional storage of the matrix A:

all al2 al3 ail4 1st dimension: affecting temperature layer
0 a22 a23 a24 2nd dimension: affected transmittance layer
0 0 a33 a34
0 0 0 a44 al2: influence of T(1) on \hat(\tau)(2)
| zeros because temperatures in a given layer don’t affect
transmittance layers above that layer

Packed storage of the upper triangle of A:

AP = [ all, al2, a22, al3, a23, a33, al4d, a24, a34, add ]

3k 3k 3k %k 3k >k 3k %k 3k ok 5k 3k 3k %k ok 3k 3k 3k >k %k 2k >k %k %k 3k 3k 3k 3k %k %k 5k K %k 3k %k %k %k Kk %k %k %k 5k %k 3k %k %k 2k 5k %k %k >k %k %k Kk %k %k %k %k %k *k %k %k %k 5k %k *k %k %k *k %k *k

subroutine tovs_tauprodK( nlev, taufix, tauh2o, tauozo,
& dqtauh2o0, dttauh2o, dutauozo, dttauozo, dttaufix,
& tauang, dqtauang, dutauang, dttauang )

implicit none
include "tovsparam.h"

integer maxpack
parameter (maxpack = (maxlev*(maxlev+1))/2 )

! variables passed into routine
integer nlev
real taufix(maxlev,maxangs)
real tauh2o(maxlev,maxangs)
real tauozo(maxlev,maxangs)
real dgqtauh2o(maxlev,maxangs)
real dttauh2o(maxlev,maxangs)
real dutauozo(maxlev,maxangs)
real dttauozo(maxlev,maxangs)
real dttaufix(maxpack,maxangs)

! variables passed out of routine
real tauang(maxlev,maxangs)
real dqtauang(maxlev,maxangs)
real dutauang(maxlev,maxangs)
real dttauang(maxpack,maxangs)
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! 1local variables
integer k,1,m,n

do k = 1,maxangs
do 1l = 1,nlev

n = (1-1)*1/2 ! set index for packed array

tauang(l,k) = taufix(l,k)*tauh20(l,k)*tauozo(l,k)
dgtauang(l,k) = tauang(l,k) * dqtauh2o0(1l,k)
dutauang(l,k) = tauang(l,k) * dutauozo(l,k)

! dom-=1,1
! dttauang(m+n,k) = tauang(l,k) * dttaufix(m+n,k)
do m = n+l,n+l
dttauang(m,k) = tauang(l,k) * dttaufix(m,k)

enddo
dttauang(l+n,k) = dttauang(l+n,k) +
& tauang(l,k) * (dttauh20(l,k) + dttauozo(l,k))
enddo

do 1 = nlev+l,maxlev
n = (1-1)*1/2 ! set index for packed array

tauang(l,k) = O.
dgtauang(l,k) = O.
dutauang(l,k) = O.
do m = n+l,n+l
dttauang(m,k) = O.
enddo
enddo

enddo

return

end
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